Segmentation of MR images for brain tumor detection using autoencoder neural network
Abstract Medical images often require segmenting into different regions in the first analysis stage. Relevant features are selected to differentiate various regions from each other, and the images are segmented into meaningful (anatomically significant) regions based on these features. The purpose o...
Главные авторы: | Farnaz Hoseini, Shohreh Shamlou, Milad Ahmadi-Gharehtoragh |
---|---|
Формат: | Статья |
Язык: | English |
Опубликовано: |
Springer
2024-10-01
|
Серии: | Discover Artificial Intelligence |
Предметы: | |
Online-ссылка: | https://doi.org/10.1007/s44163-024-00180-x |
Схожие документы
-
FIESTA: Autoencoders for accurate fiber segmentation in tractography
по: Félix Dumais, и др.
Опубликовано: (2023-10-01) -
ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data
по: Fahad Almuqhim, и др.
Опубликовано: (2021-04-01) -
A Novel Generative Adversarial Network-Based Approach for Automated Brain Tumour Segmentation
по: Roohi Sille, и др.
Опубликовано: (2023-01-01) -
Super-resolution reconstruction of brain magnetic resonance images via lightweight autoencoder
по: J. Andrew, и др.
Опубликовано: (2021-01-01) -
Deep Learning for Skeleton-Based Human Activity Segmentation: An Autoencoder Approach
по: Md Amran Hossen, и др.
Опубликовано: (2024-06-01)