Segmentation of MR images for brain tumor detection using autoencoder neural network
Abstract Medical images often require segmenting into different regions in the first analysis stage. Relevant features are selected to differentiate various regions from each other, and the images are segmented into meaningful (anatomically significant) regions based on these features. The purpose o...
Asıl Yazarlar: | Farnaz Hoseini, Shohreh Shamlou, Milad Ahmadi-Gharehtoragh |
---|---|
Materyal Türü: | Makale |
Dil: | English |
Baskı/Yayın Bilgisi: |
Springer
2024-10-01
|
Seri Bilgileri: | Discover Artificial Intelligence |
Konular: | |
Online Erişim: | https://doi.org/10.1007/s44163-024-00180-x |
Benzer Materyaller
-
FIESTA: Autoencoders for accurate fiber segmentation in tractography
Yazar:: Félix Dumais, ve diğerleri
Baskı/Yayın Bilgisi: (2023-10-01) -
ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data
Yazar:: Fahad Almuqhim, ve diğerleri
Baskı/Yayın Bilgisi: (2021-04-01) -
A Novel Generative Adversarial Network-Based Approach for Automated Brain Tumour Segmentation
Yazar:: Roohi Sille, ve diğerleri
Baskı/Yayın Bilgisi: (2023-01-01) -
Super-resolution reconstruction of brain magnetic resonance images via lightweight autoencoder
Yazar:: J. Andrew, ve diğerleri
Baskı/Yayın Bilgisi: (2021-01-01) -
Deep Learning for Skeleton-Based Human Activity Segmentation: An Autoencoder Approach
Yazar:: Md Amran Hossen, ve diğerleri
Baskı/Yayın Bilgisi: (2024-06-01)