Segmentation of MR images for brain tumor detection using autoencoder neural network
Abstract Medical images often require segmenting into different regions in the first analysis stage. Relevant features are selected to differentiate various regions from each other, and the images are segmented into meaningful (anatomically significant) regions based on these features. The purpose o...
Автори: | Farnaz Hoseini, Shohreh Shamlou, Milad Ahmadi-Gharehtoragh |
---|---|
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Springer
2024-10-01
|
Серія: | Discover Artificial Intelligence |
Предмети: | |
Онлайн доступ: | https://doi.org/10.1007/s44163-024-00180-x |
Схожі ресурси
Схожі ресурси
-
FIESTA: Autoencoders for accurate fiber segmentation in tractography
за авторством: Félix Dumais, та інші
Опубліковано: (2023-10-01) -
ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data
за авторством: Fahad Almuqhim, та інші
Опубліковано: (2021-04-01) -
A Novel Generative Adversarial Network-Based Approach for Automated Brain Tumour Segmentation
за авторством: Roohi Sille, та інші
Опубліковано: (2023-01-01) -
Super-resolution reconstruction of brain magnetic resonance images via lightweight autoencoder
за авторством: J. Andrew, та інші
Опубліковано: (2021-01-01) -
Deep Learning for Skeleton-Based Human Activity Segmentation: An Autoencoder Approach
за авторством: Md Amran Hossen, та інші
Опубліковано: (2024-06-01)