Synthesis of Polymer Grafted Starches and Their Flocculation Properties in Clay Suspension

Starch-based flocculants have been emerged as a promising alternative to conventional synthetic flocculants in wastewater treatment, especially for the treatment of oil sand tailings, as they are low cost, safe, biodegradable, fairly shear-stable, readily available from reproducible agricultural res...

Full description

Bibliographic Details
Main Authors: Nana Zhao, Hani Al Bitar, Yunyin Zhu, Yuming Xu, Zhiqing Shi
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Minerals
Subjects:
Online Access:https://www.mdpi.com/2075-163X/10/12/1054
Description
Summary:Starch-based flocculants have been emerged as a promising alternative to conventional synthetic flocculants in wastewater treatment, especially for the treatment of oil sand tailings, as they are low cost, safe, biodegradable, fairly shear-stable, readily available from reproducible agricultural resources, and do not result in secondary pollution. In this paper, three types of polymer-grafted starches (St-g-Polymer) with different charge properties were synthesized and their molecular structures were controlled by atom transfer radical polymerization (ATRP). The correlations between the charge properties of starch-based flocculants, external environmental parameters, and flocculation performance were systematically investigated by conducting jar tests under various environmental conditions. It was found that the charge properties of the branch chain had a significant impact on flocculation performance. The cationic St-g-Polymer demonstrated the best performance due to the grafting of the cationic monomer to the starch backbone which improved the solubility of the copolymer and aided in the removal of small/water-soluble particles. The results obtained could assist in guiding the selection and design of suitable biodegradable flocculants when treating targeted wastewater.
ISSN:2075-163X