Cooperation of Adhesin Alleles in <italic toggle="yes">Salmonella</italic>-Host Tropism

ABSTRACT Allelic combinations and host specificities for three fimbrial adhesins, FimH, BcfD, and StfH, were compared for 262 strains of Salmonella enterica serovar Newport, a frequent human and livestock pathogen. Like FimH, BcfD had two major alleles (designated A and B), whereas StfH had two alle...

Full description

Bibliographic Details
Main Authors: Leon De Masi, Min Yue, Changmin Hu, Alexey V. Rakov, Shelley C. Rankin, Dieter M. Schifferli
Format: Article
Language:English
Published: American Society for Microbiology 2017-04-01
Series:mSphere
Subjects:
Online Access:https://journals.asm.org/doi/10.1128/mSphere.00066-17
_version_ 1818399006674386944
author Leon De Masi
Min Yue
Changmin Hu
Alexey V. Rakov
Shelley C. Rankin
Dieter M. Schifferli
author_facet Leon De Masi
Min Yue
Changmin Hu
Alexey V. Rakov
Shelley C. Rankin
Dieter M. Schifferli
author_sort Leon De Masi
collection DOAJ
description ABSTRACT Allelic combinations and host specificities for three fimbrial adhesins, FimH, BcfD, and StfH, were compared for 262 strains of Salmonella enterica serovar Newport, a frequent human and livestock pathogen. Like FimH, BcfD had two major alleles (designated A and B), whereas StfH had two allelic groups, each with two alleles (subgroup A1 and A2 and subgroup B1 and B2). The most prevalent combinations of FimH/BcfD/StfH alleles in S. Newport were A/A/A1 and B/B/B1. The former set was most frequently found in bovine and porcine strains, whereas the latter combination was most frequently found in environmental and human isolates. Bacteria genetically engineered to express Fim, Bcf, or Stf fimbriae on their surface were tested with the different alleles for binding to human, porcine, and bovine intestinal epithelial cells. The major allelic combinations with bovine and porcine strains (A/A/A1) or with human isolates (B/B/B1) provided at least two alleles capable of binding significantly better than the other alleles to an intestinal epithelial cell line from the respective host(s). However, each combination of alleles kept at least one allele mediating binding to an intestinal epithelial cell from another host. These findings indicated that allelic variation in multiple adhesins of S. Newport contributes to bacterial adaptation to certain preferential hosts without losing the capacity to maintain a broad host range. IMPORTANCE Salmonella enterica remains a leading foodborne bacterial pathogen in the United States; infected livestock serve often as the source of contaminated food products. A study estimated that over a billion Salmonella gastroenteritis cases and up to 33 million typhoid cases occur annually worldwide, with 3.5 million deaths. Although many Salmonella strains with a broad host range present preferential associations with certain host species, it is not clear what determines the various levels of host adaptation. Here, causal properties of host associations were determined with allelic variants of three colonization factors of S. enterica serovar Newport, a most frequent zoonotic serovar. This is the first study that related not only individual but also a small group of host-associated gene variants with functional properties that cooperate to determine the level of host-adapted virulence. The detected associations should help to identify sources of Salmonella infections in both humans and animals.
first_indexed 2024-12-14T07:13:49Z
format Article
id doaj.art-e3534f5bbee84192aa50ca4ed57e9d82
institution Directory Open Access Journal
issn 2379-5042
language English
last_indexed 2024-12-14T07:13:49Z
publishDate 2017-04-01
publisher American Society for Microbiology
record_format Article
series mSphere
spelling doaj.art-e3534f5bbee84192aa50ca4ed57e9d822022-12-21T23:11:45ZengAmerican Society for MicrobiologymSphere2379-50422017-04-012210.1128/mSphere.00066-17Cooperation of Adhesin Alleles in <italic toggle="yes">Salmonella</italic>-Host TropismLeon De Masi0Min Yue1Changmin Hu2Alexey V. Rakov3Shelley C. Rankin4Dieter M. Schifferli5Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, USADepartment of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, USADepartment of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, USADepartment of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, USADepartment of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, USADepartment of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, USAABSTRACT Allelic combinations and host specificities for three fimbrial adhesins, FimH, BcfD, and StfH, were compared for 262 strains of Salmonella enterica serovar Newport, a frequent human and livestock pathogen. Like FimH, BcfD had two major alleles (designated A and B), whereas StfH had two allelic groups, each with two alleles (subgroup A1 and A2 and subgroup B1 and B2). The most prevalent combinations of FimH/BcfD/StfH alleles in S. Newport were A/A/A1 and B/B/B1. The former set was most frequently found in bovine and porcine strains, whereas the latter combination was most frequently found in environmental and human isolates. Bacteria genetically engineered to express Fim, Bcf, or Stf fimbriae on their surface were tested with the different alleles for binding to human, porcine, and bovine intestinal epithelial cells. The major allelic combinations with bovine and porcine strains (A/A/A1) or with human isolates (B/B/B1) provided at least two alleles capable of binding significantly better than the other alleles to an intestinal epithelial cell line from the respective host(s). However, each combination of alleles kept at least one allele mediating binding to an intestinal epithelial cell from another host. These findings indicated that allelic variation in multiple adhesins of S. Newport contributes to bacterial adaptation to certain preferential hosts without losing the capacity to maintain a broad host range. IMPORTANCE Salmonella enterica remains a leading foodborne bacterial pathogen in the United States; infected livestock serve often as the source of contaminated food products. A study estimated that over a billion Salmonella gastroenteritis cases and up to 33 million typhoid cases occur annually worldwide, with 3.5 million deaths. Although many Salmonella strains with a broad host range present preferential associations with certain host species, it is not clear what determines the various levels of host adaptation. Here, causal properties of host associations were determined with allelic variants of three colonization factors of S. enterica serovar Newport, a most frequent zoonotic serovar. This is the first study that related not only individual but also a small group of host-associated gene variants with functional properties that cooperate to determine the level of host-adapted virulence. The detected associations should help to identify sources of Salmonella infections in both humans and animals.https://journals.asm.org/doi/10.1128/mSphere.00066-17Salmonella Newportadhesinsallelic variationfimbriaehost tropism
spellingShingle Leon De Masi
Min Yue
Changmin Hu
Alexey V. Rakov
Shelley C. Rankin
Dieter M. Schifferli
Cooperation of Adhesin Alleles in <italic toggle="yes">Salmonella</italic>-Host Tropism
mSphere
Salmonella Newport
adhesins
allelic variation
fimbriae
host tropism
title Cooperation of Adhesin Alleles in <italic toggle="yes">Salmonella</italic>-Host Tropism
title_full Cooperation of Adhesin Alleles in <italic toggle="yes">Salmonella</italic>-Host Tropism
title_fullStr Cooperation of Adhesin Alleles in <italic toggle="yes">Salmonella</italic>-Host Tropism
title_full_unstemmed Cooperation of Adhesin Alleles in <italic toggle="yes">Salmonella</italic>-Host Tropism
title_short Cooperation of Adhesin Alleles in <italic toggle="yes">Salmonella</italic>-Host Tropism
title_sort cooperation of adhesin alleles in italic toggle yes salmonella italic host tropism
topic Salmonella Newport
adhesins
allelic variation
fimbriae
host tropism
url https://journals.asm.org/doi/10.1128/mSphere.00066-17
work_keys_str_mv AT leondemasi cooperationofadhesinallelesinitalictoggleyessalmonellaitalichosttropism
AT minyue cooperationofadhesinallelesinitalictoggleyessalmonellaitalichosttropism
AT changminhu cooperationofadhesinallelesinitalictoggleyessalmonellaitalichosttropism
AT alexeyvrakov cooperationofadhesinallelesinitalictoggleyessalmonellaitalichosttropism
AT shelleycrankin cooperationofadhesinallelesinitalictoggleyessalmonellaitalichosttropism
AT dietermschifferli cooperationofadhesinallelesinitalictoggleyessalmonellaitalichosttropism