Biomass Steam Gasification, High-Temperature Gas Cleaning, and SOFC Model: A Parametric Analysis

Gasification technology is actually one of the most effective ways to produce power and hydrogen from biomass. Solid oxide fuel cells (SOFCs) have proved to be an excellent energy conversion device. They can transform the chemical energy content in the syngas, produced by a gasifier, directly into e...

Full description

Bibliographic Details
Main Authors: Vera Marcantonio, Danilo Monarca, Mauro Villarini, Andrea Di Carlo, Luca Del Zotto, Enrico Bocci
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/13/22/5936
Description
Summary:Gasification technology is actually one of the most effective ways to produce power and hydrogen from biomass. Solid oxide fuel cells (SOFCs) have proved to be an excellent energy conversion device. They can transform the chemical energy content in the syngas, produced by a gasifier, directly into electrical energy. A steady-state model of a biomass-SOFC was developed using process simulation software, ASPEN Plus (10, AspenTech, Bedford, MA, USA). The objective of this work was to implement a biomass-SOFC system capable of predicting performance under diverse operating conditions. The system is made of a gasification zone, gas cleaning steps, and SOFC. The SOFC modelling was done without external subroutines, unlike most models in the literature, using only the existing ASPEN Plus blocks, making the model simpler and more reliable. The analysis of the syngas composition out of each cleaning step is in accordance with literature data. Then, a sensitivity analysis was carried out on the main parameters. The results indicate that there must be a trade-off between voltage, electrical efficiency, and power with respect to current density and it is preferable to stay at a low steam-to-biomass ratio. The electrical efficiency achieved under the operating conditions is 57%, a high value, making these systems very attractive.
ISSN:1996-1073