Hydrothermal synthesis and properties of NiFe2O4@BaTiO3 composites with well-matched interface
NiFe2O4@BaTiO3 multiferroic composite particles were produced by a simple hydrothermal method in two steps: preparing NiFe2O4 nanoparticles and then synthesizing core-shell nanocomposites. Multiferroic composite ceramics were sintered from these powders. X-ray diffraction, Raman scattering and energ...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2012-01-01
|
Series: | Science and Technology of Advanced Materials |
Online Access: | http://dx.doi.org/10.1088/1468-6996/13/4/045001 |
Summary: | NiFe2O4@BaTiO3 multiferroic composite particles were produced by a simple hydrothermal method in two steps: preparing NiFe2O4 nanoparticles and then synthesizing core-shell nanocomposites. Multiferroic composite ceramics were sintered from these powders. X-ray diffraction, Raman scattering and energy dispersive x-ray analyses indicated that the core-shell composites with a NiFe2O4 core and BaTiO3 shell were formed in the hydrothermal environment. Different types of sharp interfaces were self-assembled owing to the minimization of direct elastic energy. The saturation magnetization of the composites linearly increased with the NiFe2O4 content while the dielectric constant decreased. A dielectric peak appeared at around 460 °C because of the oxygen vacancies in the BaTiO3 ceramics. It resulted in an enhancement of magnetic permeability in the composites, indicating magnetoelectric coupling that was also observed by direct magnetoelectric measurements. |
---|---|
ISSN: | 1468-6996 1878-5514 |