Five-dimensional non-Lorentzian conformal field theories and their relation to six-dimensions

Abstract We study correlation functions in five-dimensional non-Lorentzian theories with an SU(1, 3) conformal symmetry. Examples of such theories have recently been obtained as Ω-deformed Yang-Mills Lagrangians arising from a null reduction of six-dimensional superconformal field theories on a conf...

Full description

Bibliographic Details
Main Authors: N. Lambert, A. Lipstein, R. Mouland, P. Richmond
Format: Article
Language:English
Published: SpringerOpen 2021-03-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP03(2021)053
Description
Summary:Abstract We study correlation functions in five-dimensional non-Lorentzian theories with an SU(1, 3) conformal symmetry. Examples of such theories have recently been obtained as Ω-deformed Yang-Mills Lagrangians arising from a null reduction of six-dimensional superconformal field theories on a conformally compactified Minkowski space. The correlators exhibit a rich structure with many novel properties compared to conventional correlators in Lorentzian conformal field theories. Moreover, identifying the instanton number with the Fourier mode number of the dimensional reduction offers a hope to formulate six-dimensional conformal field theories in terms of five-dimensional Lagrangian theories. To this end we show that the Fourier decompositions of six-dimensional correlation functions solve the Ward identities of the SU(1, 3) symmetry, although more general solutions are possible. Conversely we illustrate how one can reconstruct six-dimensional correlation functions from those of a five-dimensional theory, and do so explicitly at 2- and 3-points. We also show that, in a suitable decompactification limit Ω → 0, the correlation functions become those of the DLCQ description.
ISSN:1029-8479