Learning recurrent dynamics in spiking networks
Spiking activity of neurons engaged in learning and performing a task show complex spatiotemporal dynamics. While the output of recurrent network models can learn to perform various tasks, the possible range of recurrent dynamics that emerge after learning remains unknown. Here we show that modifyin...
Hlavní autoři: | Christopher M Kim, Carson C Chow |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
eLife Sciences Publications Ltd
2018-09-01
|
Edice: | eLife |
Témata: | |
On-line přístup: | https://elifesciences.org/articles/37124 |
Podobné jednotky
-
A Non-spiking Neuron Model With Dynamic Leak to Avoid Instability in Recurrent Networks
Autor: Udaya B. Rongala, a další
Vydáno: (2021-05-01) -
Modified Elman Spike Neural Network for Identification and Control of Dynamic System
Autor: Nadia Adnan Shiltagh Al-Jamali, a další
Vydáno: (2020-01-01) -
Identifying steady state in the network dynamics of spiking neural networks
Autor: Vivek Kurien George, a další
Vydáno: (2023-03-01) -
Volatile Memory Motifs: Minimal Spiking Neural Networks
Autor: Fabio Schittler Neves, a další
Vydáno: (2023-01-01) -
Spike-based computation using classical recurrent neural networks
Autor: Florent De Geeter, a další
Vydáno: (2024-01-01)