Learning recurrent dynamics in spiking networks
Spiking activity of neurons engaged in learning and performing a task show complex spatiotemporal dynamics. While the output of recurrent network models can learn to perform various tasks, the possible range of recurrent dynamics that emerge after learning remains unknown. Here we show that modifyin...
المؤلفون الرئيسيون: | Christopher M Kim, Carson C Chow |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
eLife Sciences Publications Ltd
2018-09-01
|
سلاسل: | eLife |
الموضوعات: | |
الوصول للمادة أونلاين: | https://elifesciences.org/articles/37124 |
مواد مشابهة
-
A Non-spiking Neuron Model With Dynamic Leak to Avoid Instability in Recurrent Networks
حسب: Udaya B. Rongala, وآخرون
منشور في: (2021-05-01) -
Temporal Spiking Recurrent Neural Network for Action Recognition
حسب: Wei Wang, وآخرون
منشور في: (2019-01-01) -
Modified Elman Spike Neural Network for Identification and Control of Dynamic System
حسب: Nadia Adnan Shiltagh Al-Jamali, وآخرون
منشور في: (2020-01-01) -
Identifying steady state in the network dynamics of spiking neural networks
حسب: Vivek Kurien George, وآخرون
منشور في: (2023-03-01) -
Volatile Memory Motifs: Minimal Spiking Neural Networks
حسب: Fabio Schittler Neves, وآخرون
منشور في: (2023-01-01)