Learning recurrent dynamics in spiking networks
Spiking activity of neurons engaged in learning and performing a task show complex spatiotemporal dynamics. While the output of recurrent network models can learn to perform various tasks, the possible range of recurrent dynamics that emerge after learning remains unknown. Here we show that modifyin...
Autors principals: | Christopher M Kim, Carson C Chow |
---|---|
Format: | Article |
Idioma: | English |
Publicat: |
eLife Sciences Publications Ltd
2018-09-01
|
Col·lecció: | eLife |
Matèries: | |
Accés en línia: | https://elifesciences.org/articles/37124 |
Ítems similars
-
A Non-spiking Neuron Model With Dynamic Leak to Avoid Instability in Recurrent Networks
per: Udaya B. Rongala, et al.
Publicat: (2021-05-01) -
Temporal Spiking Recurrent Neural Network for Action Recognition
per: Wei Wang, et al.
Publicat: (2019-01-01) -
Modified Elman Spike Neural Network for Identification and Control of Dynamic System
per: Nadia Adnan Shiltagh Al-Jamali, et al.
Publicat: (2020-01-01) -
Identifying steady state in the network dynamics of spiking neural networks
per: Vivek Kurien George, et al.
Publicat: (2023-03-01) -
Volatile Memory Motifs: Minimal Spiking Neural Networks
per: Fabio Schittler Neves, et al.
Publicat: (2023-01-01)