Learning recurrent dynamics in spiking networks
Spiking activity of neurons engaged in learning and performing a task show complex spatiotemporal dynamics. While the output of recurrent network models can learn to perform various tasks, the possible range of recurrent dynamics that emerge after learning remains unknown. Here we show that modifyin...
Autores principales: | Christopher M Kim, Carson C Chow |
---|---|
Formato: | Artículo |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications Ltd
2018-09-01
|
Colección: | eLife |
Materias: | |
Acceso en línea: | https://elifesciences.org/articles/37124 |
Ejemplares similares
-
A Non-spiking Neuron Model With Dynamic Leak to Avoid Instability in Recurrent Networks
por: Udaya B. Rongala, et al.
Publicado: (2021-05-01) -
Temporal Spiking Recurrent Neural Network for Action Recognition
por: Wei Wang, et al.
Publicado: (2019-01-01) -
Modified Elman Spike Neural Network for Identification and Control of Dynamic System
por: Nadia Adnan Shiltagh Al-Jamali, et al.
Publicado: (2020-01-01) -
Identifying steady state in the network dynamics of spiking neural networks
por: Vivek Kurien George, et al.
Publicado: (2023-03-01) -
Volatile Memory Motifs: Minimal Spiking Neural Networks
por: Fabio Schittler Neves, et al.
Publicado: (2023-01-01)