Learning recurrent dynamics in spiking networks
Spiking activity of neurons engaged in learning and performing a task show complex spatiotemporal dynamics. While the output of recurrent network models can learn to perform various tasks, the possible range of recurrent dynamics that emerge after learning remains unknown. Here we show that modifyin...
Päätekijät: | Christopher M Kim, Carson C Chow |
---|---|
Aineistotyyppi: | Artikkeli |
Kieli: | English |
Julkaistu: |
eLife Sciences Publications Ltd
2018-09-01
|
Sarja: | eLife |
Aiheet: | |
Linkit: | https://elifesciences.org/articles/37124 |
Samankaltaisia teoksia
-
A Non-spiking Neuron Model With Dynamic Leak to Avoid Instability in Recurrent Networks
Tekijä: Udaya B. Rongala, et al.
Julkaistu: (2021-05-01) -
Temporal Spiking Recurrent Neural Network for Action Recognition
Tekijä: Wei Wang, et al.
Julkaistu: (2019-01-01) -
Modified Elman Spike Neural Network for Identification and Control of Dynamic System
Tekijä: Nadia Adnan Shiltagh Al-Jamali, et al.
Julkaistu: (2020-01-01) -
Identifying steady state in the network dynamics of spiking neural networks
Tekijä: Vivek Kurien George, et al.
Julkaistu: (2023-03-01) -
Volatile Memory Motifs: Minimal Spiking Neural Networks
Tekijä: Fabio Schittler Neves, et al.
Julkaistu: (2023-01-01)