Learning recurrent dynamics in spiking networks
Spiking activity of neurons engaged in learning and performing a task show complex spatiotemporal dynamics. While the output of recurrent network models can learn to perform various tasks, the possible range of recurrent dynamics that emerge after learning remains unknown. Here we show that modifyin...
Auteurs principaux: | Christopher M Kim, Carson C Chow |
---|---|
Format: | Article |
Langue: | English |
Publié: |
eLife Sciences Publications Ltd
2018-09-01
|
Collection: | eLife |
Sujets: | |
Accès en ligne: | https://elifesciences.org/articles/37124 |
Documents similaires
-
A Non-spiking Neuron Model With Dynamic Leak to Avoid Instability in Recurrent Networks
par: Udaya B. Rongala, et autres
Publié: (2021-05-01) -
Temporal Spiking Recurrent Neural Network for Action Recognition
par: Wei Wang, et autres
Publié: (2019-01-01) -
Modified Elman Spike Neural Network for Identification and Control of Dynamic System
par: Nadia Adnan Shiltagh Al-Jamali, et autres
Publié: (2020-01-01) -
Identifying steady state in the network dynamics of spiking neural networks
par: Vivek Kurien George, et autres
Publié: (2023-03-01) -
Volatile Memory Motifs: Minimal Spiking Neural Networks
par: Fabio Schittler Neves, et autres
Publié: (2023-01-01)