Learning recurrent dynamics in spiking networks
Spiking activity of neurons engaged in learning and performing a task show complex spatiotemporal dynamics. While the output of recurrent network models can learn to perform various tasks, the possible range of recurrent dynamics that emerge after learning remains unknown. Here we show that modifyin...
主要な著者: | Christopher M Kim, Carson C Chow |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
eLife Sciences Publications Ltd
2018-09-01
|
シリーズ: | eLife |
主題: | |
オンライン・アクセス: | https://elifesciences.org/articles/37124 |
類似資料
-
A Non-spiking Neuron Model With Dynamic Leak to Avoid Instability in Recurrent Networks
著者:: Udaya B. Rongala, 等
出版事項: (2021-05-01) -
Modified Elman Spike Neural Network for Identification and Control of Dynamic System
著者:: Nadia Adnan Shiltagh Al-Jamali, 等
出版事項: (2020-01-01) -
Identifying steady state in the network dynamics of spiking neural networks
著者:: Vivek Kurien George, 等
出版事項: (2023-03-01) -
Volatile Memory Motifs: Minimal Spiking Neural Networks
著者:: Fabio Schittler Neves, 等
出版事項: (2023-01-01) -
Spike-based computation using classical recurrent neural networks
著者:: Florent De Geeter, 等
出版事項: (2024-01-01)