Learning recurrent dynamics in spiking networks
Spiking activity of neurons engaged in learning and performing a task show complex spatiotemporal dynamics. While the output of recurrent network models can learn to perform various tasks, the possible range of recurrent dynamics that emerge after learning remains unknown. Here we show that modifyin...
Hoofdauteurs: | Christopher M Kim, Carson C Chow |
---|---|
Formaat: | Artikel |
Taal: | English |
Gepubliceerd in: |
eLife Sciences Publications Ltd
2018-09-01
|
Reeks: | eLife |
Onderwerpen: | |
Online toegang: | https://elifesciences.org/articles/37124 |
Gelijkaardige items
-
A Non-spiking Neuron Model With Dynamic Leak to Avoid Instability in Recurrent Networks
door: Udaya B. Rongala, et al.
Gepubliceerd in: (2021-05-01) -
Temporal Spiking Recurrent Neural Network for Action Recognition
door: Wei Wang, et al.
Gepubliceerd in: (2019-01-01) -
Modified Elman Spike Neural Network for Identification and Control of Dynamic System
door: Nadia Adnan Shiltagh Al-Jamali, et al.
Gepubliceerd in: (2020-01-01) -
Identifying steady state in the network dynamics of spiking neural networks
door: Vivek Kurien George, et al.
Gepubliceerd in: (2023-03-01) -
Volatile Memory Motifs: Minimal Spiking Neural Networks
door: Fabio Schittler Neves, et al.
Gepubliceerd in: (2023-01-01)