Learning recurrent dynamics in spiking networks
Spiking activity of neurons engaged in learning and performing a task show complex spatiotemporal dynamics. While the output of recurrent network models can learn to perform various tasks, the possible range of recurrent dynamics that emerge after learning remains unknown. Here we show that modifyin...
Главные авторы: | Christopher M Kim, Carson C Chow |
---|---|
Формат: | Статья |
Язык: | English |
Опубликовано: |
eLife Sciences Publications Ltd
2018-09-01
|
Серии: | eLife |
Предметы: | |
Online-ссылка: | https://elifesciences.org/articles/37124 |
Схожие документы
-
A Non-spiking Neuron Model With Dynamic Leak to Avoid Instability in Recurrent Networks
по: Udaya B. Rongala, и др.
Опубликовано: (2021-05-01) -
Temporal Spiking Recurrent Neural Network for Action Recognition
по: Wei Wang, и др.
Опубликовано: (2019-01-01) -
Modified Elman Spike Neural Network for Identification and Control of Dynamic System
по: Nadia Adnan Shiltagh Al-Jamali, и др.
Опубликовано: (2020-01-01) -
Identifying steady state in the network dynamics of spiking neural networks
по: Vivek Kurien George, и др.
Опубликовано: (2023-03-01) -
Volatile Memory Motifs: Minimal Spiking Neural Networks
по: Fabio Schittler Neves, и др.
Опубликовано: (2023-01-01)