Learning recurrent dynamics in spiking networks
Spiking activity of neurons engaged in learning and performing a task show complex spatiotemporal dynamics. While the output of recurrent network models can learn to perform various tasks, the possible range of recurrent dynamics that emerge after learning remains unknown. Here we show that modifyin...
Những tác giả chính: | Christopher M Kim, Carson C Chow |
---|---|
Định dạng: | Bài viết |
Ngôn ngữ: | English |
Được phát hành: |
eLife Sciences Publications Ltd
2018-09-01
|
Loạt: | eLife |
Những chủ đề: | |
Truy cập trực tuyến: | https://elifesciences.org/articles/37124 |
Những quyển sách tương tự
-
A Non-spiking Neuron Model With Dynamic Leak to Avoid Instability in Recurrent Networks
Bằng: Udaya B. Rongala, et al.
Được phát hành: (2021-05-01) -
Temporal Spiking Recurrent Neural Network for Action Recognition
Bằng: Wei Wang, et al.
Được phát hành: (2019-01-01) -
Modified Elman Spike Neural Network for Identification and Control of Dynamic System
Bằng: Nadia Adnan Shiltagh Al-Jamali, et al.
Được phát hành: (2020-01-01) -
Identifying steady state in the network dynamics of spiking neural networks
Bằng: Vivek Kurien George, et al.
Được phát hành: (2023-03-01) -
Volatile Memory Motifs: Minimal Spiking Neural Networks
Bằng: Fabio Schittler Neves, et al.
Được phát hành: (2023-01-01)