Integrating Spectral Information and Meteorological Data to Monitor Wheat Yellow Rust at a Regional Scale: A Case Study

Wheat yellow rust has a severe impact on wheat production and threatens food security in China; as such, an effective monitoring method is necessary at the regional scale. We propose a model for yellow rust monitoring based on Sentinel-2 multispectral images and a series of two-stage vegetation indi...

Full description

Bibliographic Details
Main Authors: Qiong Zheng, Huichun Ye, Wenjiang Huang, Yingying Dong, Hao Jiang, Chongyang Wang, Dan Li, Li Wang, Shuisen Chen
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/13/2/278
Description
Summary:Wheat yellow rust has a severe impact on wheat production and threatens food security in China; as such, an effective monitoring method is necessary at the regional scale. We propose a model for yellow rust monitoring based on Sentinel-2 multispectral images and a series of two-stage vegetation indices and meteorological data. Sensitive spectral vegetation indices (single- and two-stage indices) and meteorological features for wheat yellow rust discrimination were selected using the random forest method. Wheat yellow rust monitoring models were established using three different classification methods: linear discriminant analysis (LDA), support vector machine (SVM), and artificial neural network (ANN). The results show that models based on two-stage indices (i.e., those calculated using images from two different days) significantly outperform single-stage index models (i.e., those calculated using an image from a single day), the overall accuracy improved from 63.2% to 78.9%. The classification accuracies of models combining a vegetation index with meteorological feature are higher than those of pure vegetation index models. Among them, the model based on two-stage vegetation indices and meteorological features performs best, with a classification accuracy exceeding 73.7%. The SVM algorithm performed best for wheat yellow rust monitoring among the three algorithms; its classification accuracy (84.2%) was ~10.5% and 5.3% greater than those of LDA and ANN, respectively. Combined with crop growth and environmental information, our model has great potential for monitoring wheat yellow rust at a regional scale. Future work will focus on regional-scale monitoring and forecasting of crop disease.
ISSN:2072-4292