Study of salt solutions influence on clay minerals hydration when drilling wells on the example of Talnakhskoe deposits
The relevance of the discussed issue is caused by the need to study and to develop drilling fluids for boring exploratory wells in difficult geological conditions of Talnakhskoe deposits. The main aim of the research is to study and assess the impact of simple salts and polyelectrolyte solutions on...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | Russian |
Published: |
Tomsk Polytechnic University
2019-05-01
|
Series: | Известия Томского политехнического университета: Инжиниринг георесурсов |
Subjects: | |
Online Access: | http://izvestiya-tpu.ru/archive/article/view/1534 |
Summary: | The relevance of the discussed issue is caused by the need to study and to develop drilling fluids for boring exploratory wells in difficult geological conditions of Talnakhskoe deposits. The main aim of the research is to study and assess the impact of simple salts and polyelectrolyte solutions on clay minerals hydration when drilling applying complexes with retrievable core receiver on Talnakhskoe deposits. The methods used in the study: methods of X-ray fluorescence spectrometry, electron microscopy, X-ray, spectroscopic and tomographic analysis to determine the clay mineral composition of rocks; hydration of clay minerals on the tester of longitudinal swelling. The results. The authors have studied illite and montmorillonite hydratation in simple salts solutions, water-soluble polymers and their combinations. Translational movement of water molecules due to the presence of K- ion which possesses negative hydration leads to increase in rate of penetration of water molecules into the pore space of clay minerals, regardless of their types. In concentrated solutions of simple salts the translational motion of water molecules is more intense in comparison with pure water, that results in destabilization of rocks containing clay minerals in their composition. Independently of the type of the solution, the porosity and permeability affect the change in linear dimensions of the clay samples, as evidenced by the graphs of the experimental samples made at different pressures. Polyanions and polycations facilitate more rapid penetration of water molecules into the pore space and further in the interlayer space of the clay minerals, which leads to virtually unlimited swelling. The rate of hydration of the clay minerals slows in solutions containing hydratable cations (Ca2- , Mg2- ), stabilization occurs over a longer period than in the case of potassium ion. |
---|---|
ISSN: | 2500-1019 2413-1830 |