A Comprehensive Analysis of the Dynamic Response to Aphidicolin-Mediated Replication Stress Uncovers Targets for ATM and ATMIN

The cellular response to replication stress requires the DNA-damage-responsive kinase ATM and its cofactor ATMIN; however, the roles of this signaling pathway following replication stress are unclear. To identify the functions of ATM and ATMIN in response to replication stress, we utilized both tran...

Full description

Bibliographic Details
Main Authors: Abdelghani Mazouzi, Alexey Stukalov, André C. Müller, Doris Chen, Marc Wiedner, Jana Prochazkova, Shih-Chieh Chiang, Michael Schuster, Florian P. Breitwieser, Andreas Pichlmair, Sherif F. El-Khamisy, Christoph Bock, Robert Kralovics, Jacques Colinge, Keiryn L. Bennett, Joanna I. Loizou
Format: Article
Language:English
Published: Elsevier 2016-04-01
Series:Cell Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124716303667
Description
Summary:The cellular response to replication stress requires the DNA-damage-responsive kinase ATM and its cofactor ATMIN; however, the roles of this signaling pathway following replication stress are unclear. To identify the functions of ATM and ATMIN in response to replication stress, we utilized both transcriptomics and quantitative mass-spectrometry-based phosphoproteomics. We found that replication stress induced by aphidicolin triggered widespread changes in both gene expression and protein phosphorylation patterns. These changes gave rise to distinct early and late replication stress responses. Furthermore, our analysis revealed previously unknown targets of ATM and ATMIN downstream of replication stress. We demonstrate ATMIN-dependent phosphorylation of H2AX and of CRMP2, a protein previously implicated in Alzheimer’s disease but not in the DNA damage response. Overall, our dataset provides a comprehensive resource for discovering the cellular responses to replication stress and, potentially, associated pathologies.
ISSN:2211-1247