Facilitated Transport of Copper(II) across Polymer Inclusion Membrane with Triazole Derivatives as Carrier

This study investigates copper(II) ion transport through a polymer inclusion membrane (PIM) containing 1-alkyl-1,2,4-triazole (n = 8, 9, 10, 11, 12, 14), <i>o</i>-nitrophenyl octyl ether as the plasticizer and cellulose triacetate as the polymer matrix. The feeding phase was a solution o...

Full description

Bibliographic Details
Main Authors: Bernadeta Gajda, Radosław Plackowski, Andrzej Skrzypczak, Mariusz B. Bogacki
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Membranes
Subjects:
Online Access:https://www.mdpi.com/2077-0375/10/9/201
Description
Summary:This study investigates copper(II) ion transport through a polymer inclusion membrane (PIM) containing 1-alkyl-1,2,4-triazole (n = 8, 9, 10, 11, 12, 14), <i>o</i>-nitrophenyl octyl ether as the plasticizer and cellulose triacetate as the polymer matrix. The feeding phase was a solution of 0.1 mol/dm<sup>3</sup><i>CuCl</i><sub>2</sub> and an equimolar (0.1 mol/dm<sup>3</sup>) mixture of copper, nickel, and cobalt chlorides with varying concentrations of chloride anions (from 0.5 to 5.0 mol/dm<sup>3</sup>) established with NaCl. The receiving phase was demineralized water. The flow rate of the source and receiving phases through the membrane module was within the range from 0.5 cm<sup>3</sup>/min to 4.5 cm<sup>3</sup>/min. The tests were carried out at temperatures of 20, 30, 40 and 50 °C. Transport of NaCl through the membrane was excluded for the duration of the test. It was noted that the flow rate through the membrane changes depending on the length of the carbon chain in the alkyl substituent from 16.1 μmol/(m<sup>2</sup>s) to 1.59 μmol/(m<sup>2</sup>s) in the following order: <i>C</i><sub>8</sub><i>> C</i><sub>9</sub><i>> C</i><sub>10</sub><i>> C</i><sub>11</sub><i>> C</i><sub>12</sub><i>> C</i><sub>14</sub>. The activation energy was 71.3 ± 3.0 kJ/mol, indicating ion transport through the PIM controlled with a chemical reaction. Results for transport in case of the concurrent separation of copper(II), nickel(II), and cobalt(II) indicate a possibility to separate them in a selective manner.
ISSN:2077-0375