Design and Performance of an Innovative Four-Bed, Three-Stage Adsorption Cycle
The design of a four-bed three-stage adsorption cycle has been proposed to reduce the volume of the six-bed three-stage adsorption cycle. A simulation model for the proposed innovative cycle was developed to analyse the influence of cycle time on the system performance identifying the specific cooli...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2013-03-01
|
Series: | Energies |
Subjects: | |
Online Access: | http://www.mdpi.com/1996-1073/6/3/1365 |
_version_ | 1798005719829577728 |
---|---|
author | Bidyut Baran Saha Takahiko Miyazaki Atsushi Akisawa Abul Fazal Mohammad Mizanur Rahman Yuki Ueda |
author_facet | Bidyut Baran Saha Takahiko Miyazaki Atsushi Akisawa Abul Fazal Mohammad Mizanur Rahman Yuki Ueda |
author_sort | Bidyut Baran Saha |
collection | DOAJ |
description | The design of a four-bed three-stage adsorption cycle has been proposed to reduce the volume of the six-bed three-stage adsorption cycle. A simulation model for the proposed innovative cycle was developed to analyse the influence of cycle time on the system performance identifying the specific cooling power (SCP) and coefficient of performance (COP). A particle swarm optimization (PSO) technique was used to optimize the cycle time enabling us to maximize the SCP. PSO results showed that the optimal cycle time was decreased with heat source temperature and SCP value was proportional to heat source temperature. It was found that the proposed cycle could be driven by waste heat as low as 40 °C, along with coolant at 30 °C. Comparative study of optimized result indicated that the proposed cycle increased the performance significantly over a whole range of temperatures from 40 to 70 °C and reduced two adsorbent beds, compared to the six-bed three-stage cycle. |
first_indexed | 2024-04-11T12:43:36Z |
format | Article |
id | doaj.art-e3bc9ea6a46e46d1822c76fe567eaed7 |
institution | Directory Open Access Journal |
issn | 1996-1073 |
language | English |
last_indexed | 2024-04-11T12:43:36Z |
publishDate | 2013-03-01 |
publisher | MDPI AG |
record_format | Article |
series | Energies |
spelling | doaj.art-e3bc9ea6a46e46d1822c76fe567eaed72022-12-22T04:23:25ZengMDPI AGEnergies1996-10732013-03-01631365138410.3390/en6031365Design and Performance of an Innovative Four-Bed, Three-Stage Adsorption CycleBidyut Baran SahaTakahiko MiyazakiAtsushi AkisawaAbul Fazal Mohammad Mizanur RahmanYuki UedaThe design of a four-bed three-stage adsorption cycle has been proposed to reduce the volume of the six-bed three-stage adsorption cycle. A simulation model for the proposed innovative cycle was developed to analyse the influence of cycle time on the system performance identifying the specific cooling power (SCP) and coefficient of performance (COP). A particle swarm optimization (PSO) technique was used to optimize the cycle time enabling us to maximize the SCP. PSO results showed that the optimal cycle time was decreased with heat source temperature and SCP value was proportional to heat source temperature. It was found that the proposed cycle could be driven by waste heat as low as 40 °C, along with coolant at 30 °C. Comparative study of optimized result indicated that the proposed cycle increased the performance significantly over a whole range of temperatures from 40 to 70 °C and reduced two adsorbent beds, compared to the six-bed three-stage cycle.http://www.mdpi.com/1996-1073/6/3/1365adsorption cyclecoolingfour-bedthree-stageoptimization |
spellingShingle | Bidyut Baran Saha Takahiko Miyazaki Atsushi Akisawa Abul Fazal Mohammad Mizanur Rahman Yuki Ueda Design and Performance of an Innovative Four-Bed, Three-Stage Adsorption Cycle Energies adsorption cycle cooling four-bed three-stage optimization |
title | Design and Performance of an Innovative Four-Bed, Three-Stage Adsorption Cycle |
title_full | Design and Performance of an Innovative Four-Bed, Three-Stage Adsorption Cycle |
title_fullStr | Design and Performance of an Innovative Four-Bed, Three-Stage Adsorption Cycle |
title_full_unstemmed | Design and Performance of an Innovative Four-Bed, Three-Stage Adsorption Cycle |
title_short | Design and Performance of an Innovative Four-Bed, Three-Stage Adsorption Cycle |
title_sort | design and performance of an innovative four bed three stage adsorption cycle |
topic | adsorption cycle cooling four-bed three-stage optimization |
url | http://www.mdpi.com/1996-1073/6/3/1365 |
work_keys_str_mv | AT bidyutbaransaha designandperformanceofaninnovativefourbedthreestageadsorptioncycle AT takahikomiyazaki designandperformanceofaninnovativefourbedthreestageadsorptioncycle AT atsushiakisawa designandperformanceofaninnovativefourbedthreestageadsorptioncycle AT abulfazalmohammadmizanurrahman designandperformanceofaninnovativefourbedthreestageadsorptioncycle AT yukiueda designandperformanceofaninnovativefourbedthreestageadsorptioncycle |