Impact of Plant Density on the Formation of Potato Mimitubers Derived from Microtubers and Tip-Cuttings in Plastic Houses

The potato minitubers have been widely used for the elite seed propagation to improve the seed potato system in China. However, little information is available for an efficient production of the minitubers with high plant density in the protected growing conditions like plastic houses. In present re...

Full description

Bibliographic Details
Main Authors: Hui JIN, Jun LIU, Bo-tao SONG, Cong-hua XIE
Format: Article
Language:English
Published: Elsevier 2013-06-01
Series:Journal of Integrative Agriculture
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2095311913604785
Description
Summary:The potato minitubers have been widely used for the elite seed propagation to improve the seed potato system in China. However, little information is available for an efficient production of the minitubers with high plant density in the protected growing conditions like plastic houses. In present research, the minitubers of a wide-grown potato variety, Favorita, were produced with the microtubers from tissue culture and the tip-cuttings of the microtuber plants. Three plant densities, 200, 400 and 600 microtubers or plants m−2 were set up with the randomized block design of 3 replications and the experiment was repeated in 4 seasons in 2009-2010. The canopy development, light interception, dry weight production and partitioning, tuberization and tuber weight were investigated to elucidate the mechanism by which the plant density affects the formation and growth of the minitubers. The results showed that the number of the tubers formed per unite area was in line with the increase in plant density. The difference in leaf area index (LAI) between the plant densities, especially in early stage of the plant growth, resulted in more radiation interception and dry weight producing in higher plant density than in lower one. However, our analysis demonstrated that the conversion coefficient of the cumulative intercepted radiation to plant weight and the dry weight partition rate to the tubers were constant between plant densities, suggesting that less amount of the photoassimilates partitioned to individual tubers is causal for more small tubers in high plant density. A negative exponential curve model, determined by total number of tubers produced per unit area and the mean tuber weight, fitted well to the tuber size distribution pattern. The optimum plant density could be estimated from this model for a maximum production of the minitubers with desired size.
ISSN:2095-3119