N 6-methyladenosine RNA modification suppresses antiviral innate sensing pathways via reshaping double-stranded RNA
N6-methyladenosine (m6A) RNA modification regulates RNA metabolism, and has been implicated in immune regulation. Here, the authors show that the m6A methyltransferase, METTL3, translocates into the cytoplasm to increase viral RNA m6A modification, decreases viral ds RNA content, and thereby dampens...
Main Authors: | , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2021-03-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-021-21904-y |
Summary: | N6-methyladenosine (m6A) RNA modification regulates RNA metabolism, and has been implicated in immune regulation. Here, the authors show that the m6A methyltransferase, METTL3, translocates into the cytoplasm to increase viral RNA m6A modification, decreases viral ds RNA content, and thereby dampens the RIG/MDA5-induced anti-viral immunity. |
---|---|
ISSN: | 2041-1723 |