Improving Motor Imagery EEG Classification Based on Channel Selection Using a Deep Learning Architecture

Recently, motor imagery EEG signals have been widely applied in Brain–Computer Interfaces (BCI). These signals are typically observed in the first motor cortex of the brain, resulting from the imagination of body limb movements. For non-invasive BCI systems, it is not apparent how to locate the elec...

Full description

Bibliographic Details
Main Authors: Tat’y Mwata-Velu, Juan Gabriel Avina-Cervantes, Jose Ruiz-Pinales, Tomas Alberto Garcia-Calva, Erick-Alejandro González-Barbosa, Juan B. Hurtado-Ramos, José-Joel González-Barbosa
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/13/2302
_version_ 1797408679788544000
author Tat’y Mwata-Velu
Juan Gabriel Avina-Cervantes
Jose Ruiz-Pinales
Tomas Alberto Garcia-Calva
Erick-Alejandro González-Barbosa
Juan B. Hurtado-Ramos
José-Joel González-Barbosa
author_facet Tat’y Mwata-Velu
Juan Gabriel Avina-Cervantes
Jose Ruiz-Pinales
Tomas Alberto Garcia-Calva
Erick-Alejandro González-Barbosa
Juan B. Hurtado-Ramos
José-Joel González-Barbosa
author_sort Tat’y Mwata-Velu
collection DOAJ
description Recently, motor imagery EEG signals have been widely applied in Brain–Computer Interfaces (BCI). These signals are typically observed in the first motor cortex of the brain, resulting from the imagination of body limb movements. For non-invasive BCI systems, it is not apparent how to locate the electrodes, optimizing the accuracy for a given task. This study proposes a comparative analysis of channel signals exploiting the Deep Learning (DL) technique and a public dataset to locate the most discriminant channels. EEG channels are usually selected based on the function and nomenclature of electrode location from international standards. Instead, the most suitable configuration for a given paradigm must be determined by analyzing the proper selection of the channels. Therefore, an EEGNet network was implemented to classify signals from different channel location using the accuracy metric. Achieved results were then contrasted with results from the state-of-the-art. As a result, the proposed method improved BCI classification accuracy.
first_indexed 2024-03-09T04:01:58Z
format Article
id doaj.art-e3cf58480e804d64abf115214ffad973
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T04:01:58Z
publishDate 2022-07-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-e3cf58480e804d64abf115214ffad9732023-12-03T14:12:18ZengMDPI AGMathematics2227-73902022-07-011013230210.3390/math10132302Improving Motor Imagery EEG Classification Based on Channel Selection Using a Deep Learning ArchitectureTat’y Mwata-Velu0Juan Gabriel Avina-Cervantes1Jose Ruiz-Pinales2Tomas Alberto Garcia-Calva3Erick-Alejandro González-Barbosa4Juan B. Hurtado-Ramos5José-Joel González-Barbosa6Telematics and Digital Signal Processing Research Groups (CAs), Electronics Engineering Department, University of Guanajuato, Carr. Salamanca-Valle de Santiago km 3.5 + 1.8, Com. Palo Blanco, Salamanca 36885, MexicoTelematics and Digital Signal Processing Research Groups (CAs), Electronics Engineering Department, University of Guanajuato, Carr. Salamanca-Valle de Santiago km 3.5 + 1.8, Com. Palo Blanco, Salamanca 36885, MexicoTelematics and Digital Signal Processing Research Groups (CAs), Electronics Engineering Department, University of Guanajuato, Carr. Salamanca-Valle de Santiago km 3.5 + 1.8, Com. Palo Blanco, Salamanca 36885, MexicoTelematics and Digital Signal Processing Research Groups (CAs), Electronics Engineering Department, University of Guanajuato, Carr. Salamanca-Valle de Santiago km 3.5 + 1.8, Com. Palo Blanco, Salamanca 36885, MexicoTecnológico Nacional de México/ITS de Irapuato, Carretera Irapuato—Silao km 12.5 Colonia El Copal, Irapuato 36821, MexicoInstituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada—Unidad Querétaro, Av. Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro 76090, MexicoInstituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada—Unidad Querétaro, Av. Cerro Blanco 141, Col. Colinas del Cimatario, Querétaro 76090, MexicoRecently, motor imagery EEG signals have been widely applied in Brain–Computer Interfaces (BCI). These signals are typically observed in the first motor cortex of the brain, resulting from the imagination of body limb movements. For non-invasive BCI systems, it is not apparent how to locate the electrodes, optimizing the accuracy for a given task. This study proposes a comparative analysis of channel signals exploiting the Deep Learning (DL) technique and a public dataset to locate the most discriminant channels. EEG channels are usually selected based on the function and nomenclature of electrode location from international standards. Instead, the most suitable configuration for a given paradigm must be determined by analyzing the proper selection of the channels. Therefore, an EEGNet network was implemented to classify signals from different channel location using the accuracy metric. Achieved results were then contrasted with results from the state-of-the-art. As a result, the proposed method improved BCI classification accuracy.https://www.mdpi.com/2227-7390/10/13/2302motor imageryEEG signalsdeep learningEEGNet10–20 international system
spellingShingle Tat’y Mwata-Velu
Juan Gabriel Avina-Cervantes
Jose Ruiz-Pinales
Tomas Alberto Garcia-Calva
Erick-Alejandro González-Barbosa
Juan B. Hurtado-Ramos
José-Joel González-Barbosa
Improving Motor Imagery EEG Classification Based on Channel Selection Using a Deep Learning Architecture
Mathematics
motor imagery
EEG signals
deep learning
EEGNet
10–20 international system
title Improving Motor Imagery EEG Classification Based on Channel Selection Using a Deep Learning Architecture
title_full Improving Motor Imagery EEG Classification Based on Channel Selection Using a Deep Learning Architecture
title_fullStr Improving Motor Imagery EEG Classification Based on Channel Selection Using a Deep Learning Architecture
title_full_unstemmed Improving Motor Imagery EEG Classification Based on Channel Selection Using a Deep Learning Architecture
title_short Improving Motor Imagery EEG Classification Based on Channel Selection Using a Deep Learning Architecture
title_sort improving motor imagery eeg classification based on channel selection using a deep learning architecture
topic motor imagery
EEG signals
deep learning
EEGNet
10–20 international system
url https://www.mdpi.com/2227-7390/10/13/2302
work_keys_str_mv AT tatymwatavelu improvingmotorimageryeegclassificationbasedonchannelselectionusingadeeplearningarchitecture
AT juangabrielavinacervantes improvingmotorimageryeegclassificationbasedonchannelselectionusingadeeplearningarchitecture
AT joseruizpinales improvingmotorimageryeegclassificationbasedonchannelselectionusingadeeplearningarchitecture
AT tomasalbertogarciacalva improvingmotorimageryeegclassificationbasedonchannelselectionusingadeeplearningarchitecture
AT erickalejandrogonzalezbarbosa improvingmotorimageryeegclassificationbasedonchannelselectionusingadeeplearningarchitecture
AT juanbhurtadoramos improvingmotorimageryeegclassificationbasedonchannelselectionusingadeeplearningarchitecture
AT josejoelgonzalezbarbosa improvingmotorimageryeegclassificationbasedonchannelselectionusingadeeplearningarchitecture