Forecasting Air Temperature on Edge Devices with Embedded AI

With the advent of the Smart Agriculture, the joint utilization of Internet of Things (IoT) and Machine Learning (ML) holds the promise to significantly improve agricultural production and sustainability. In this paper, the design of a Neural Network (NN)-based prediction model of a greenhouse’s int...

Full description

Bibliographic Details
Main Authors: Gaia Codeluppi, Luca Davoli, Gianluigi Ferrari
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/21/12/3973
Description
Summary:With the advent of the Smart Agriculture, the joint utilization of Internet of Things (IoT) and Machine Learning (ML) holds the promise to significantly improve agricultural production and sustainability. In this paper, the design of a Neural Network (NN)-based prediction model of a greenhouse’s internal air temperature, to be deployed and run on an edge device with constrained capabilities, is investigated. The model relies on a time series-oriented approach, taking as input variables the past and present values of the air temperature to forecast the future ones. In detail, we evaluate three different NN architecture types—namely, Long Short-Term Memory (LSTM) networks, Recurrent NNs (RNNs) and Artificial NNs (ANNs)—with various values of the sliding window associated with input data. Experimental results show that the three best-performing models have a Root Mean Squared Error (RMSE) value in the range <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.289</mn><mo>÷</mo><mn>0.402</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow></mrow><mo>∘</mo></msup><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula>, a Mean Absolute Percentage Error (MAPE) in the range of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.87</mn><mo>÷</mo><mn>1.04</mn></mrow></semantics></math></inline-formula>%, and a coefficient of determination (R<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula>) not smaller than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.997</mn></mrow></semantics></math></inline-formula>. The overall best performing model, based on an ANN, has a good prediction performance together with low computational and architectural complexities (evaluated on the basis of the NetScore metric), making its deployment on an edge device feasible.
ISSN:1424-8220