Forecasting Air Temperature on Edge Devices with Embedded AI
With the advent of the Smart Agriculture, the joint utilization of Internet of Things (IoT) and Machine Learning (ML) holds the promise to significantly improve agricultural production and sustainability. In this paper, the design of a Neural Network (NN)-based prediction model of a greenhouse’s int...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-06-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/21/12/3973 |
_version_ | 1797530833426317312 |
---|---|
author | Gaia Codeluppi Luca Davoli Gianluigi Ferrari |
author_facet | Gaia Codeluppi Luca Davoli Gianluigi Ferrari |
author_sort | Gaia Codeluppi |
collection | DOAJ |
description | With the advent of the Smart Agriculture, the joint utilization of Internet of Things (IoT) and Machine Learning (ML) holds the promise to significantly improve agricultural production and sustainability. In this paper, the design of a Neural Network (NN)-based prediction model of a greenhouse’s internal air temperature, to be deployed and run on an edge device with constrained capabilities, is investigated. The model relies on a time series-oriented approach, taking as input variables the past and present values of the air temperature to forecast the future ones. In detail, we evaluate three different NN architecture types—namely, Long Short-Term Memory (LSTM) networks, Recurrent NNs (RNNs) and Artificial NNs (ANNs)—with various values of the sliding window associated with input data. Experimental results show that the three best-performing models have a Root Mean Squared Error (RMSE) value in the range <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.289</mn><mo>÷</mo><mn>0.402</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow></mrow><mo>∘</mo></msup><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula>, a Mean Absolute Percentage Error (MAPE) in the range of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.87</mn><mo>÷</mo><mn>1.04</mn></mrow></semantics></math></inline-formula>%, and a coefficient of determination (R<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula>) not smaller than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.997</mn></mrow></semantics></math></inline-formula>. The overall best performing model, based on an ANN, has a good prediction performance together with low computational and architectural complexities (evaluated on the basis of the NetScore metric), making its deployment on an edge device feasible. |
first_indexed | 2024-03-10T10:35:38Z |
format | Article |
id | doaj.art-e3d5a935d793424aa925e1390cdbe277 |
institution | Directory Open Access Journal |
issn | 1424-8220 |
language | English |
last_indexed | 2024-03-10T10:35:38Z |
publishDate | 2021-06-01 |
publisher | MDPI AG |
record_format | Article |
series | Sensors |
spelling | doaj.art-e3d5a935d793424aa925e1390cdbe2772023-11-21T23:21:12ZengMDPI AGSensors1424-82202021-06-012112397310.3390/s21123973Forecasting Air Temperature on Edge Devices with Embedded AIGaia Codeluppi0Luca Davoli1Gianluigi Ferrari2Internet of Things (IoT) Lab, Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze, 181/A, 43124 Parma, ItalyInternet of Things (IoT) Lab, Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze, 181/A, 43124 Parma, ItalyInternet of Things (IoT) Lab, Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze, 181/A, 43124 Parma, ItalyWith the advent of the Smart Agriculture, the joint utilization of Internet of Things (IoT) and Machine Learning (ML) holds the promise to significantly improve agricultural production and sustainability. In this paper, the design of a Neural Network (NN)-based prediction model of a greenhouse’s internal air temperature, to be deployed and run on an edge device with constrained capabilities, is investigated. The model relies on a time series-oriented approach, taking as input variables the past and present values of the air temperature to forecast the future ones. In detail, we evaluate three different NN architecture types—namely, Long Short-Term Memory (LSTM) networks, Recurrent NNs (RNNs) and Artificial NNs (ANNs)—with various values of the sliding window associated with input data. Experimental results show that the three best-performing models have a Root Mean Squared Error (RMSE) value in the range <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.289</mn><mo>÷</mo><mn>0.402</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow></mrow><mo>∘</mo></msup><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula>, a Mean Absolute Percentage Error (MAPE) in the range of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.87</mn><mo>÷</mo><mn>1.04</mn></mrow></semantics></math></inline-formula>%, and a coefficient of determination (R<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula>) not smaller than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.997</mn></mrow></semantics></math></inline-formula>. The overall best performing model, based on an ANN, has a good prediction performance together with low computational and architectural complexities (evaluated on the basis of the NetScore metric), making its deployment on an edge device feasible.https://www.mdpi.com/1424-8220/21/12/3973internet of thingssmart farmingEdgeAIneural networksgreenhouse managementwireless sensor network |
spellingShingle | Gaia Codeluppi Luca Davoli Gianluigi Ferrari Forecasting Air Temperature on Edge Devices with Embedded AI Sensors internet of things smart farming EdgeAI neural networks greenhouse management wireless sensor network |
title | Forecasting Air Temperature on Edge Devices with Embedded AI |
title_full | Forecasting Air Temperature on Edge Devices with Embedded AI |
title_fullStr | Forecasting Air Temperature on Edge Devices with Embedded AI |
title_full_unstemmed | Forecasting Air Temperature on Edge Devices with Embedded AI |
title_short | Forecasting Air Temperature on Edge Devices with Embedded AI |
title_sort | forecasting air temperature on edge devices with embedded ai |
topic | internet of things smart farming EdgeAI neural networks greenhouse management wireless sensor network |
url | https://www.mdpi.com/1424-8220/21/12/3973 |
work_keys_str_mv | AT gaiacodeluppi forecastingairtemperatureonedgedeviceswithembeddedai AT lucadavoli forecastingairtemperatureonedgedeviceswithembeddedai AT gianluigiferrari forecastingairtemperatureonedgedeviceswithembeddedai |