Forecasting Air Temperature on Edge Devices with Embedded AI

With the advent of the Smart Agriculture, the joint utilization of Internet of Things (IoT) and Machine Learning (ML) holds the promise to significantly improve agricultural production and sustainability. In this paper, the design of a Neural Network (NN)-based prediction model of a greenhouse’s int...

Full description

Bibliographic Details
Main Authors: Gaia Codeluppi, Luca Davoli, Gianluigi Ferrari
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/21/12/3973
_version_ 1797530833426317312
author Gaia Codeluppi
Luca Davoli
Gianluigi Ferrari
author_facet Gaia Codeluppi
Luca Davoli
Gianluigi Ferrari
author_sort Gaia Codeluppi
collection DOAJ
description With the advent of the Smart Agriculture, the joint utilization of Internet of Things (IoT) and Machine Learning (ML) holds the promise to significantly improve agricultural production and sustainability. In this paper, the design of a Neural Network (NN)-based prediction model of a greenhouse’s internal air temperature, to be deployed and run on an edge device with constrained capabilities, is investigated. The model relies on a time series-oriented approach, taking as input variables the past and present values of the air temperature to forecast the future ones. In detail, we evaluate three different NN architecture types—namely, Long Short-Term Memory (LSTM) networks, Recurrent NNs (RNNs) and Artificial NNs (ANNs)—with various values of the sliding window associated with input data. Experimental results show that the three best-performing models have a Root Mean Squared Error (RMSE) value in the range <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.289</mn><mo>÷</mo><mn>0.402</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow></mrow><mo>∘</mo></msup><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula>, a Mean Absolute Percentage Error (MAPE) in the range of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.87</mn><mo>÷</mo><mn>1.04</mn></mrow></semantics></math></inline-formula>%, and a coefficient of determination (R<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula>) not smaller than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.997</mn></mrow></semantics></math></inline-formula>. The overall best performing model, based on an ANN, has a good prediction performance together with low computational and architectural complexities (evaluated on the basis of the NetScore metric), making its deployment on an edge device feasible.
first_indexed 2024-03-10T10:35:38Z
format Article
id doaj.art-e3d5a935d793424aa925e1390cdbe277
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-10T10:35:38Z
publishDate 2021-06-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-e3d5a935d793424aa925e1390cdbe2772023-11-21T23:21:12ZengMDPI AGSensors1424-82202021-06-012112397310.3390/s21123973Forecasting Air Temperature on Edge Devices with Embedded AIGaia Codeluppi0Luca Davoli1Gianluigi Ferrari2Internet of Things (IoT) Lab, Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze, 181/A, 43124 Parma, ItalyInternet of Things (IoT) Lab, Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze, 181/A, 43124 Parma, ItalyInternet of Things (IoT) Lab, Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze, 181/A, 43124 Parma, ItalyWith the advent of the Smart Agriculture, the joint utilization of Internet of Things (IoT) and Machine Learning (ML) holds the promise to significantly improve agricultural production and sustainability. In this paper, the design of a Neural Network (NN)-based prediction model of a greenhouse’s internal air temperature, to be deployed and run on an edge device with constrained capabilities, is investigated. The model relies on a time series-oriented approach, taking as input variables the past and present values of the air temperature to forecast the future ones. In detail, we evaluate three different NN architecture types—namely, Long Short-Term Memory (LSTM) networks, Recurrent NNs (RNNs) and Artificial NNs (ANNs)—with various values of the sliding window associated with input data. Experimental results show that the three best-performing models have a Root Mean Squared Error (RMSE) value in the range <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.289</mn><mo>÷</mo><mn>0.402</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow></mrow><mo>∘</mo></msup><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula>, a Mean Absolute Percentage Error (MAPE) in the range of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.87</mn><mo>÷</mo><mn>1.04</mn></mrow></semantics></math></inline-formula>%, and a coefficient of determination (R<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula>) not smaller than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.997</mn></mrow></semantics></math></inline-formula>. The overall best performing model, based on an ANN, has a good prediction performance together with low computational and architectural complexities (evaluated on the basis of the NetScore metric), making its deployment on an edge device feasible.https://www.mdpi.com/1424-8220/21/12/3973internet of thingssmart farmingEdgeAIneural networksgreenhouse managementwireless sensor network
spellingShingle Gaia Codeluppi
Luca Davoli
Gianluigi Ferrari
Forecasting Air Temperature on Edge Devices with Embedded AI
Sensors
internet of things
smart farming
EdgeAI
neural networks
greenhouse management
wireless sensor network
title Forecasting Air Temperature on Edge Devices with Embedded AI
title_full Forecasting Air Temperature on Edge Devices with Embedded AI
title_fullStr Forecasting Air Temperature on Edge Devices with Embedded AI
title_full_unstemmed Forecasting Air Temperature on Edge Devices with Embedded AI
title_short Forecasting Air Temperature on Edge Devices with Embedded AI
title_sort forecasting air temperature on edge devices with embedded ai
topic internet of things
smart farming
EdgeAI
neural networks
greenhouse management
wireless sensor network
url https://www.mdpi.com/1424-8220/21/12/3973
work_keys_str_mv AT gaiacodeluppi forecastingairtemperatureonedgedeviceswithembeddedai
AT lucadavoli forecastingairtemperatureonedgedeviceswithembeddedai
AT gianluigiferrari forecastingairtemperatureonedgedeviceswithembeddedai