UFaceNet: Research on Multi-Task Face Recognition Algorithm Based on CNN

With the application of deep convolutional neural networks, the performance of computer vision tasks has been improved to a new level. The construction of a deeper and more complex network allows the face recognition algorithm to obtain a higher accuracy, However, the disadvantages of large computat...

Full description

Bibliographic Details
Main Authors: Huoyou Li, Jianshiun Hu, Jingwen Yu, Ning Yu, Qingqiang Wu
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Algorithms
Subjects:
Online Access:https://www.mdpi.com/1999-4893/14/9/268
Description
Summary:With the application of deep convolutional neural networks, the performance of computer vision tasks has been improved to a new level. The construction of a deeper and more complex network allows the face recognition algorithm to obtain a higher accuracy, However, the disadvantages of large computation and storage costs of neural networks limit the further popularization of the algorithm. To solve this problem, we have studied the unified and efficient neural network face recognition algorithm under the condition of a single camera; we propose that the complete face recognition process consists of four tasks: face detection, in vivo detection, keypoint detection, and face verification; combining the key algorithms of these four tasks, we propose a unified network model based on a deep separable convolutional structure—UFaceNet. The model uses multisource data to carry out multitask joint training and uses the keypoint detection results to aid the learning of other tasks. It further introduces the attention mechanism through feature level clipping and alignment to ensure the accuracy of the model, using the shared convolutional layer network among tasks to reduce model calculations amount and realize network acceleration. The learning goal of multi-tasking implicitly increases the amount of training data and different data distribution, making it easier to learn the characteristics with generalization. The experimental results show that the UFaceNet model is better than other models in terms of calculation amount and number of parameters with higher efficiency, and some potential areas to be used.
ISSN:1999-4893