The oncolytic activity of Clostridium novyi nontoxic spores in breast cancer

Introduction: Hypoxia context is highly specific for tumors and represents a unique niche which is not found elsewhere in the body. Clostridium novyi is an obligate anaerobic bacterium. It has a potential to treat tumors. The aim of this study was to produce the C. novyi nontoxic spores and to inves...

Full description

Bibliographic Details
Main Authors: Fatemeh Abedi Jafari, Asghar Abdoli, Reza Pilehchian, Neda Soleimani, Seyed Masoud Hosseini
Format: Article
Language:English
Published: Tabriz University of Medical Sciences 2022-09-01
Series:BioImpacts
Subjects:
Online Access:https://bi.tbzmed.ac.ir/PDF/bi-12-405.pdf
Description
Summary:Introduction: Hypoxia context is highly specific for tumors and represents a unique niche which is not found elsewhere in the body. Clostridium novyi is an obligate anaerobic bacterium. It has a potential to treat tumors. The aim of this study was to produce the C. novyi nontoxic spores and to investigate its oncolytic effect on breast cancer in mice model. Methods: Primarily, the lethal toxin gene in C. novyi type B was removed. Colonies were isolated using PCR testing. To assure the removal of alpha-toxin, plasmid extraction and in vivo assay were conducted. Next, to treat breast cancer model in different sizes of tumors, a single dose of spores of C. novyi nontoxic was tested. Results: The results denoted that C. novyi nontoxic lost lethal toxin and a­­ppeared to be safe. For smaller than 1000 mm3 tumors, a single dose of C. novyi nontoxic was able to cure 100% of mice bearing breast tumors. Hence the mice remained free of tumor relapse. Tumors larger than 1000 mm3 were not cured by a single dose­ of C. novyi nontoxic treatment. Conclusion: The experiment concluded that the C. novyi nontoxic might be a suitable and safe candidate, a novel therapeutic approach to encounter such hypoxic regions in the center of tumors. Research also showed that bacteriolytic therapy by C. novyi nontoxic could lead to regression in small tumor.
ISSN:2228-5660
2228-5652