An Improved Convergence Condition of the MMS Iteration Method for Horizontal LCP of <i>H</i><sub>+</sub>-Matrices

In this paper, inspired by the previous work in (Appl. Math. Comput., 369 (2020) 124890), we focus on the convergence condition of the modulus-based matrix splitting (MMS) iteration method for solving the horizontal linear complementarity problem (HLCP) with <inline-formula><math xmlns=&quo...

Full description

Bibliographic Details
Main Authors: Cuixia Li, Shiliang Wu
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/8/1842
_version_ 1797604496832987136
author Cuixia Li
Shiliang Wu
author_facet Cuixia Li
Shiliang Wu
author_sort Cuixia Li
collection DOAJ
description In this paper, inspired by the previous work in (Appl. Math. Comput., 369 (2020) 124890), we focus on the convergence condition of the modulus-based matrix splitting (MMS) iteration method for solving the horizontal linear complementarity problem (HLCP) with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mo>+</mo></msub></semantics></math></inline-formula>-matrices. An improved convergence condition of the MMS iteration method is given to improve the range of its applications, in a way which is better than that in the above published article.
first_indexed 2024-03-11T04:47:08Z
format Article
id doaj.art-e3f0833a8fad40c792d03ab5221bfdf6
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T04:47:08Z
publishDate 2023-04-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-e3f0833a8fad40c792d03ab5221bfdf62023-11-17T20:17:20ZengMDPI AGMathematics2227-73902023-04-01118184210.3390/math11081842An Improved Convergence Condition of the MMS Iteration Method for Horizontal LCP of <i>H</i><sub>+</sub>-MatricesCuixia Li0Shiliang Wu1School of Mathematics, Yunnan Normal University, Kunming 650500, ChinaSchool of Mathematics, Yunnan Normal University, Kunming 650500, ChinaIn this paper, inspired by the previous work in (Appl. Math. Comput., 369 (2020) 124890), we focus on the convergence condition of the modulus-based matrix splitting (MMS) iteration method for solving the horizontal linear complementarity problem (HLCP) with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mo>+</mo></msub></semantics></math></inline-formula>-matrices. An improved convergence condition of the MMS iteration method is given to improve the range of its applications, in a way which is better than that in the above published article.https://www.mdpi.com/2227-7390/11/8/1842horizontal linear complementarity problem<i>H</i><sub>+</sub>-matrixthe MMS iteration method
spellingShingle Cuixia Li
Shiliang Wu
An Improved Convergence Condition of the MMS Iteration Method for Horizontal LCP of <i>H</i><sub>+</sub>-Matrices
Mathematics
horizontal linear complementarity problem
<i>H</i><sub>+</sub>-matrix
the MMS iteration method
title An Improved Convergence Condition of the MMS Iteration Method for Horizontal LCP of <i>H</i><sub>+</sub>-Matrices
title_full An Improved Convergence Condition of the MMS Iteration Method for Horizontal LCP of <i>H</i><sub>+</sub>-Matrices
title_fullStr An Improved Convergence Condition of the MMS Iteration Method for Horizontal LCP of <i>H</i><sub>+</sub>-Matrices
title_full_unstemmed An Improved Convergence Condition of the MMS Iteration Method for Horizontal LCP of <i>H</i><sub>+</sub>-Matrices
title_short An Improved Convergence Condition of the MMS Iteration Method for Horizontal LCP of <i>H</i><sub>+</sub>-Matrices
title_sort improved convergence condition of the mms iteration method for horizontal lcp of i h i sub sub matrices
topic horizontal linear complementarity problem
<i>H</i><sub>+</sub>-matrix
the MMS iteration method
url https://www.mdpi.com/2227-7390/11/8/1842
work_keys_str_mv AT cuixiali animprovedconvergenceconditionofthemmsiterationmethodforhorizontallcpofihisubsubmatrices
AT shiliangwu animprovedconvergenceconditionofthemmsiterationmethodforhorizontallcpofihisubsubmatrices
AT cuixiali improvedconvergenceconditionofthemmsiterationmethodforhorizontallcpofihisubsubmatrices
AT shiliangwu improvedconvergenceconditionofthemmsiterationmethodforhorizontallcpofihisubsubmatrices