On the influence of multidirectional irregular waves on the PeWEC device

Wave energy is a promising renewable resource for its reliability and power density, and many technological milestones have been achieved. Significant efforts are made to design and optimize Wave Energy Converters (WECs); however, analyses are often limited to simplified conditions. Among such restr...

Full description

Bibliographic Details
Main Authors: Giulia Cervelli, Beatrice Battisti, Giuliana Mattiazzo
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-09-01
Series:Frontiers in Energy Research
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fenrg.2022.908529/full
_version_ 1828405154849751040
author Giulia Cervelli
Beatrice Battisti
Giuliana Mattiazzo
author_facet Giulia Cervelli
Beatrice Battisti
Giuliana Mattiazzo
author_sort Giulia Cervelli
collection DOAJ
description Wave energy is a promising renewable resource for its reliability and power density, and many technological milestones have been achieved. Significant efforts are made to design and optimize Wave Energy Converters (WECs); however, analyses are often limited to simplified conditions. Among such restrictive assumptions, waves are frequently described utilizing monodirectional spectra, thus leading to approximate evaluations, also in terms of absorbed power. In real sea conditions, the waves are multidirectional, and the analysis as a 2D superposition of multiple wave components should be investigated. In particular, linear waves can be analyzed as a sum of sine waves characterized by different amplitudes, frequencies, phases and directions. The case study device analyzed in this paper is PeWEC (Pendulum Wave Energy Converter), a rotating mass device that converts energy based on pitch motion, moored through a spread catenary mooring system. The sea states investigated are those of the island of Cyprus. The spectrum is defined as the combination between the JONSWAP frequency spectrum and the cos-2s directional spectrum. To compute the sea elevation components the Deterministic Amplitude Scheme (DAS) method is used. The forcing acting on the device, the mooring loads and the device motions are examined and compared to quantify the error produced by the monodirectional approximations. The time domain solver OrcaFlex is employed to investigate the interaction of the waves with the moored hull. Compared with the multidirectional analysis, the monodirectional approximation generates an overestimation of the pitch by 5% and of the surge by 3%, highlighting the importance of taking spreading into account if the device is directional.
first_indexed 2024-12-10T10:48:39Z
format Article
id doaj.art-e3f6d13e906f4e08841481014ba94ca4
institution Directory Open Access Journal
issn 2296-598X
language English
last_indexed 2024-12-10T10:48:39Z
publishDate 2022-09-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Energy Research
spelling doaj.art-e3f6d13e906f4e08841481014ba94ca42022-12-22T01:52:05ZengFrontiers Media S.A.Frontiers in Energy Research2296-598X2022-09-011010.3389/fenrg.2022.908529908529On the influence of multidirectional irregular waves on the PeWEC deviceGiulia CervelliBeatrice BattistiGiuliana MattiazzoWave energy is a promising renewable resource for its reliability and power density, and many technological milestones have been achieved. Significant efforts are made to design and optimize Wave Energy Converters (WECs); however, analyses are often limited to simplified conditions. Among such restrictive assumptions, waves are frequently described utilizing monodirectional spectra, thus leading to approximate evaluations, also in terms of absorbed power. In real sea conditions, the waves are multidirectional, and the analysis as a 2D superposition of multiple wave components should be investigated. In particular, linear waves can be analyzed as a sum of sine waves characterized by different amplitudes, frequencies, phases and directions. The case study device analyzed in this paper is PeWEC (Pendulum Wave Energy Converter), a rotating mass device that converts energy based on pitch motion, moored through a spread catenary mooring system. The sea states investigated are those of the island of Cyprus. The spectrum is defined as the combination between the JONSWAP frequency spectrum and the cos-2s directional spectrum. To compute the sea elevation components the Deterministic Amplitude Scheme (DAS) method is used. The forcing acting on the device, the mooring loads and the device motions are examined and compared to quantify the error produced by the monodirectional approximations. The time domain solver OrcaFlex is employed to investigate the interaction of the waves with the moored hull. Compared with the multidirectional analysis, the monodirectional approximation generates an overestimation of the pitch by 5% and of the surge by 3%, highlighting the importance of taking spreading into account if the device is directional.https://www.frontiersin.org/articles/10.3389/fenrg.2022.908529/fullwave energynumerical simulationsmultidirectional wavesdirectional spreadingwave energy converterwave spectrum
spellingShingle Giulia Cervelli
Beatrice Battisti
Giuliana Mattiazzo
On the influence of multidirectional irregular waves on the PeWEC device
Frontiers in Energy Research
wave energy
numerical simulations
multidirectional waves
directional spreading
wave energy converter
wave spectrum
title On the influence of multidirectional irregular waves on the PeWEC device
title_full On the influence of multidirectional irregular waves on the PeWEC device
title_fullStr On the influence of multidirectional irregular waves on the PeWEC device
title_full_unstemmed On the influence of multidirectional irregular waves on the PeWEC device
title_short On the influence of multidirectional irregular waves on the PeWEC device
title_sort on the influence of multidirectional irregular waves on the pewec device
topic wave energy
numerical simulations
multidirectional waves
directional spreading
wave energy converter
wave spectrum
url https://www.frontiersin.org/articles/10.3389/fenrg.2022.908529/full
work_keys_str_mv AT giuliacervelli ontheinfluenceofmultidirectionalirregularwavesonthepewecdevice
AT beatricebattisti ontheinfluenceofmultidirectionalirregularwavesonthepewecdevice
AT giulianamattiazzo ontheinfluenceofmultidirectionalirregularwavesonthepewecdevice