Structure and Electrical Properties of Carbon-Rich Polymer Derived Silicon Carbonitride (SiCN)

This article reports on the structure and electronic properties of carbon-rich polysilazane polymer-derived silicon carbonitride (C/SiCN) corresponding to pyrolysis temperatures between 1100 and 1600 °C in an argon atmosphere. Raman spectroscopy, X-ray diffraction (XRD), energy dispersive X-ray spec...

Full description

Bibliographic Details
Main Authors: Oluwole Daniel Adigun, Emmanuel Ricohermoso, Ayodele Abeeb Daniyan, Lasisi Ejibunu Umoru, Emanuel Ionescu
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Ceramics
Subjects:
Online Access:https://www.mdpi.com/2571-6131/5/4/50
Description
Summary:This article reports on the structure and electronic properties of carbon-rich polysilazane polymer-derived silicon carbonitride (C/SiCN) corresponding to pyrolysis temperatures between 1100 and 1600 °C in an argon atmosphere. Raman spectroscopy, X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), Scanning Electron Microscopy (SEM) and Hall measurements were used to support the structural and electronic properties characterization of the prepared C/SiCN nanocomposites. A structural analysis using Raman spectroscopy showed the evolution of sp<sup>2</sup> hybridized carbon phase that resulted from the growth in the lateral crystallite size (L<sub>a</sub>), average continuous graphene length including tortuosity (L<sub>eq</sub>) and inter-defects distance (L<sub>D</sub>) with an increase in pyrolysis temperature. The prepared C/SiCN monoliths showed a record high room temperature (RT) electrical conductivity of 9.6 S/cm for the sample prepared at 1600 °C. The electronic properties of the nanocomposites determined using Hall measurement revealed an anomalous change in the predominant charge carriers from n-type in the samples pyrolyzed at 1100 °C to predominantly p-type in the samples prepared at 1400 and 1600 °C. According to this outcome, tailor-made carbon-rich SiCN polymer-derived ceramics could be developed to produce n-type and p-type semiconductors for development of the next generation of electronic systems for applications in extreme temperature environments.
ISSN:2571-6131