QPI assay of fibroblasts resilience to adverse effects of nanoGO clusters by multimodal and multiscale microscopy
Graphene is considered a possible drug deliver in nanomedicine for its mechanical, physical and chemical characteristics. Thus, studying graphene biocompatibility is pivotal to contribute to the modern nano-therapy science. The coexistence between cells and graphene should be analysed using non-inva...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2024-01-01
|
Series: | JPhys Photonics |
Subjects: | |
Online Access: | https://doi.org/10.1088/2515-7647/ad1c6b |
_version_ | 1797352457745989632 |
---|---|
author | Marika Valentino Daniele Pirone Jaromir Béhal Martina Mugnano Rachele Castaldo Giuseppe C Lama Pasquale Memmolo Lisa Miccio Vittorio Bianco Simonetta Grilli Pietro Ferraro |
author_facet | Marika Valentino Daniele Pirone Jaromir Béhal Martina Mugnano Rachele Castaldo Giuseppe C Lama Pasquale Memmolo Lisa Miccio Vittorio Bianco Simonetta Grilli Pietro Ferraro |
author_sort | Marika Valentino |
collection | DOAJ |
description | Graphene is considered a possible drug deliver in nanomedicine for its mechanical, physical and chemical characteristics. Thus, studying graphene biocompatibility is pivotal to contribute to the modern nano-therapy science. The coexistence between cells and graphene should be analysed using non-invasive technologies and thus quantitative phase imaging (QPI) modalities are suitable to investigate the morphometric evolution of cells under nanomaterial exposure. Here, we show how a multimodal QPI approach can furnish a noninvasive analysis for probing the dose-dependent effect of nanoGO clusters on adherent NIH 3T3 fibroblast cells. We rely on both digital holography and Fourier ptychography (FP) in transmission microscopy mode. The former allows accurate time-lapse experiments at the single cell level. The latter provides a wide field of view characterization at the cells network level, thus assuring a significant statistical measurement by exploiting the intrinsic large space-bandwidth product of FP. The combination of these two techniques allows one to extract multimodal information about the cell resilience to adverse effects of nanoGO in the surrounding buffer, namely through quantitative, multi-scale, and time-resolved characterization. |
first_indexed | 2024-03-08T13:15:50Z |
format | Article |
id | doaj.art-e41cd7c268834a83918f659e11c877c4 |
institution | Directory Open Access Journal |
issn | 2515-7647 |
language | English |
last_indexed | 2024-03-08T13:15:50Z |
publishDate | 2024-01-01 |
publisher | IOP Publishing |
record_format | Article |
series | JPhys Photonics |
spelling | doaj.art-e41cd7c268834a83918f659e11c877c42024-01-18T07:57:17ZengIOP PublishingJPhys Photonics2515-76472024-01-016101500410.1088/2515-7647/ad1c6bQPI assay of fibroblasts resilience to adverse effects of nanoGO clusters by multimodal and multiscale microscopyMarika Valentino0Daniele Pirone1Jaromir Béhal2Martina Mugnano3Rachele Castaldo4Giuseppe C Lama5Pasquale Memmolo6https://orcid.org/0000-0002-9607-7728Lisa Miccio7Vittorio Bianco8https://orcid.org/0000-0003-1956-4976Simonetta Grilli9Pietro Ferraro10Institute of Applied Sciences and Intelligent Systems ‘E. Caianiello’, National Research Council (ISASI-CNR) , Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy; Department of Electrical Engineering and Information Technologies (DIETI), University of Naples ‘Federico II’ , Via Claudio 21, 80125 Napoli, ItalyInstitute of Applied Sciences and Intelligent Systems ‘E. Caianiello’, National Research Council (ISASI-CNR) , Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, ItalyInstitute of Applied Sciences and Intelligent Systems ‘E. Caianiello’, National Research Council (ISASI-CNR) , Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy; Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples ‘Federico II’ , Piazzale Tecchio 80, 80125 Naples, ItalyDepartment of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples ‘Federico II’ , Piazzale Tecchio 80, 80125 Naples, ItalyInstitute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR) , Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, ItalyInstitute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR) , P.le E. Fermi 1, 80055 Portici, ItalyInstitute of Applied Sciences and Intelligent Systems ‘E. Caianiello’, National Research Council (ISASI-CNR) , Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, ItalyInstitute of Applied Sciences and Intelligent Systems ‘E. Caianiello’, National Research Council (ISASI-CNR) , Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, ItalyInstitute of Applied Sciences and Intelligent Systems ‘E. Caianiello’, National Research Council (ISASI-CNR) , Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, ItalyInstitute of Applied Sciences and Intelligent Systems ‘E. Caianiello’, National Research Council (ISASI-CNR) , Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, ItalyInstitute of Applied Sciences and Intelligent Systems ‘E. Caianiello’, National Research Council (ISASI-CNR) , Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, ItalyGraphene is considered a possible drug deliver in nanomedicine for its mechanical, physical and chemical characteristics. Thus, studying graphene biocompatibility is pivotal to contribute to the modern nano-therapy science. The coexistence between cells and graphene should be analysed using non-invasive technologies and thus quantitative phase imaging (QPI) modalities are suitable to investigate the morphometric evolution of cells under nanomaterial exposure. Here, we show how a multimodal QPI approach can furnish a noninvasive analysis for probing the dose-dependent effect of nanoGO clusters on adherent NIH 3T3 fibroblast cells. We rely on both digital holography and Fourier ptychography (FP) in transmission microscopy mode. The former allows accurate time-lapse experiments at the single cell level. The latter provides a wide field of view characterization at the cells network level, thus assuring a significant statistical measurement by exploiting the intrinsic large space-bandwidth product of FP. The combination of these two techniques allows one to extract multimodal information about the cell resilience to adverse effects of nanoGO in the surrounding buffer, namely through quantitative, multi-scale, and time-resolved characterization.https://doi.org/10.1088/2515-7647/ad1c6bnanographene oxidecell analysisdigital holographyFourier ptychographybiovolumecell-death |
spellingShingle | Marika Valentino Daniele Pirone Jaromir Béhal Martina Mugnano Rachele Castaldo Giuseppe C Lama Pasquale Memmolo Lisa Miccio Vittorio Bianco Simonetta Grilli Pietro Ferraro QPI assay of fibroblasts resilience to adverse effects of nanoGO clusters by multimodal and multiscale microscopy JPhys Photonics nanographene oxide cell analysis digital holography Fourier ptychography biovolume cell-death |
title | QPI assay of fibroblasts resilience to adverse effects of nanoGO clusters by multimodal and multiscale microscopy |
title_full | QPI assay of fibroblasts resilience to adverse effects of nanoGO clusters by multimodal and multiscale microscopy |
title_fullStr | QPI assay of fibroblasts resilience to adverse effects of nanoGO clusters by multimodal and multiscale microscopy |
title_full_unstemmed | QPI assay of fibroblasts resilience to adverse effects of nanoGO clusters by multimodal and multiscale microscopy |
title_short | QPI assay of fibroblasts resilience to adverse effects of nanoGO clusters by multimodal and multiscale microscopy |
title_sort | qpi assay of fibroblasts resilience to adverse effects of nanogo clusters by multimodal and multiscale microscopy |
topic | nanographene oxide cell analysis digital holography Fourier ptychography biovolume cell-death |
url | https://doi.org/10.1088/2515-7647/ad1c6b |
work_keys_str_mv | AT marikavalentino qpiassayoffibroblastsresiliencetoadverseeffectsofnanogoclustersbymultimodalandmultiscalemicroscopy AT danielepirone qpiassayoffibroblastsresiliencetoadverseeffectsofnanogoclustersbymultimodalandmultiscalemicroscopy AT jaromirbehal qpiassayoffibroblastsresiliencetoadverseeffectsofnanogoclustersbymultimodalandmultiscalemicroscopy AT martinamugnano qpiassayoffibroblastsresiliencetoadverseeffectsofnanogoclustersbymultimodalandmultiscalemicroscopy AT rachelecastaldo qpiassayoffibroblastsresiliencetoadverseeffectsofnanogoclustersbymultimodalandmultiscalemicroscopy AT giuseppeclama qpiassayoffibroblastsresiliencetoadverseeffectsofnanogoclustersbymultimodalandmultiscalemicroscopy AT pasqualememmolo qpiassayoffibroblastsresiliencetoadverseeffectsofnanogoclustersbymultimodalandmultiscalemicroscopy AT lisamiccio qpiassayoffibroblastsresiliencetoadverseeffectsofnanogoclustersbymultimodalandmultiscalemicroscopy AT vittoriobianco qpiassayoffibroblastsresiliencetoadverseeffectsofnanogoclustersbymultimodalandmultiscalemicroscopy AT simonettagrilli qpiassayoffibroblastsresiliencetoadverseeffectsofnanogoclustersbymultimodalandmultiscalemicroscopy AT pietroferraro qpiassayoffibroblastsresiliencetoadverseeffectsofnanogoclustersbymultimodalandmultiscalemicroscopy |