A mechanosensing mechanism controls plasma membrane shape homeostasis at the nanoscale

As cells migrate and experience forces from their surroundings, they constantly undergo mechanical deformations which reshape their plasma membrane (PM). To maintain homeostasis, cells need to detect and restore such changes, not only in terms of overall PM area and tension as previously described,...

Full description

Bibliographic Details
Main Authors: Xarxa Quiroga, Nikhil Walani, Andrea Disanza, Albert Chavero, Alexandra Mittens, Francesc Tebar, Xavier Trepat, Robert G Parton, María Isabel Geli, Giorgio Scita, Marino Arroyo, Anabel-Lise Le Roux, Pere Roca-Cusachs
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2023-09-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/72316
_version_ 1797661015010181120
author Xarxa Quiroga
Nikhil Walani
Andrea Disanza
Albert Chavero
Alexandra Mittens
Francesc Tebar
Xavier Trepat
Robert G Parton
María Isabel Geli
Giorgio Scita
Marino Arroyo
Anabel-Lise Le Roux
Pere Roca-Cusachs
author_facet Xarxa Quiroga
Nikhil Walani
Andrea Disanza
Albert Chavero
Alexandra Mittens
Francesc Tebar
Xavier Trepat
Robert G Parton
María Isabel Geli
Giorgio Scita
Marino Arroyo
Anabel-Lise Le Roux
Pere Roca-Cusachs
author_sort Xarxa Quiroga
collection DOAJ
description As cells migrate and experience forces from their surroundings, they constantly undergo mechanical deformations which reshape their plasma membrane (PM). To maintain homeostasis, cells need to detect and restore such changes, not only in terms of overall PM area and tension as previously described, but also in terms of local, nanoscale topography. Here, we describe a novel phenomenon, by which cells sense and restore mechanically induced PM nanoscale deformations. We show that cell stretch and subsequent compression reshape the PM in a way that generates local membrane evaginations in the 100 nm scale. These evaginations are recognized by I-BAR proteins, which triggers a burst of actin polymerization mediated by Rac1 and Arp2/3. The actin polymerization burst subsequently re-flattens the evagination, completing the mechanochemical feedback loop. Our results demonstrate a new mechanosensing mechanism for PM shape homeostasis, with potential applicability in different physiological scenarios.
first_indexed 2024-03-11T18:39:16Z
format Article
id doaj.art-e420404ec4474c4ba1e511bee981ae9a
institution Directory Open Access Journal
issn 2050-084X
language English
last_indexed 2024-03-11T18:39:16Z
publishDate 2023-09-01
publisher eLife Sciences Publications Ltd
record_format Article
series eLife
spelling doaj.art-e420404ec4474c4ba1e511bee981ae9a2023-10-12T13:51:04ZengeLife Sciences Publications LtdeLife2050-084X2023-09-011210.7554/eLife.72316A mechanosensing mechanism controls plasma membrane shape homeostasis at the nanoscaleXarxa Quiroga0Nikhil Walani1https://orcid.org/0000-0002-5248-9181Andrea Disanza2Albert Chavero3Alexandra Mittens4Francesc Tebar5Xavier Trepat6https://orcid.org/0000-0002-7621-5214Robert G Parton7https://orcid.org/0000-0002-7494-5248María Isabel Geli8https://orcid.org/0000-0002-3452-6700Giorgio Scita9https://orcid.org/0000-0001-7984-1889Marino Arroyo10Anabel-Lise Le Roux11https://orcid.org/0000-0003-4152-5658Pere Roca-Cusachs12https://orcid.org/0000-0001-6947-961XInstitute for Bioengineering of Catalonia, the Barcelona Institute of Technology (BIST), Barcelona, Spain; Departament de Biomedicina, Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, SpainDepartment of Applied Mechanics, IIT Delhi, New Delhi, IndiaIFOM ETS - The AIRC Institute of Molecular Oncology, Milan, ItalyDepartament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, SpainInstitute for Bioengineering of Catalonia, the Barcelona Institute of Technology (BIST), Barcelona, SpainDepartament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, SpainInstitute for Bioengineering of Catalonia, the Barcelona Institute of Technology (BIST), Barcelona, SpainInstitute for Molecular Bioscience and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, AustraliaInstitute for Molecular Biology of Barcelona (CSIC), Barcelona, SpainIFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Haemato-Oncology, University of Milan, Milan, ItalyInstitute for Bioengineering of Catalonia, the Barcelona Institute of Technology (BIST), Barcelona, Spain; Universitat Politècnica de Catalunya (UPC), Campus Nord, Carrer de Jordi Girona, Barcelona, Spain; Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Barcelona, SpainInstitute for Bioengineering of Catalonia, the Barcelona Institute of Technology (BIST), Barcelona, SpainInstitute for Bioengineering of Catalonia, the Barcelona Institute of Technology (BIST), Barcelona, Spain; Departament de Biomedicina, Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, SpainAs cells migrate and experience forces from their surroundings, they constantly undergo mechanical deformations which reshape their plasma membrane (PM). To maintain homeostasis, cells need to detect and restore such changes, not only in terms of overall PM area and tension as previously described, but also in terms of local, nanoscale topography. Here, we describe a novel phenomenon, by which cells sense and restore mechanically induced PM nanoscale deformations. We show that cell stretch and subsequent compression reshape the PM in a way that generates local membrane evaginations in the 100 nm scale. These evaginations are recognized by I-BAR proteins, which triggers a burst of actin polymerization mediated by Rac1 and Arp2/3. The actin polymerization burst subsequently re-flattens the evagination, completing the mechanochemical feedback loop. Our results demonstrate a new mechanosensing mechanism for PM shape homeostasis, with potential applicability in different physiological scenarios.https://elifesciences.org/articles/72316mechanobiologybar proteinsmembrane biophysics
spellingShingle Xarxa Quiroga
Nikhil Walani
Andrea Disanza
Albert Chavero
Alexandra Mittens
Francesc Tebar
Xavier Trepat
Robert G Parton
María Isabel Geli
Giorgio Scita
Marino Arroyo
Anabel-Lise Le Roux
Pere Roca-Cusachs
A mechanosensing mechanism controls plasma membrane shape homeostasis at the nanoscale
eLife
mechanobiology
bar proteins
membrane biophysics
title A mechanosensing mechanism controls plasma membrane shape homeostasis at the nanoscale
title_full A mechanosensing mechanism controls plasma membrane shape homeostasis at the nanoscale
title_fullStr A mechanosensing mechanism controls plasma membrane shape homeostasis at the nanoscale
title_full_unstemmed A mechanosensing mechanism controls plasma membrane shape homeostasis at the nanoscale
title_short A mechanosensing mechanism controls plasma membrane shape homeostasis at the nanoscale
title_sort mechanosensing mechanism controls plasma membrane shape homeostasis at the nanoscale
topic mechanobiology
bar proteins
membrane biophysics
url https://elifesciences.org/articles/72316
work_keys_str_mv AT xarxaquiroga amechanosensingmechanismcontrolsplasmamembraneshapehomeostasisatthenanoscale
AT nikhilwalani amechanosensingmechanismcontrolsplasmamembraneshapehomeostasisatthenanoscale
AT andreadisanza amechanosensingmechanismcontrolsplasmamembraneshapehomeostasisatthenanoscale
AT albertchavero amechanosensingmechanismcontrolsplasmamembraneshapehomeostasisatthenanoscale
AT alexandramittens amechanosensingmechanismcontrolsplasmamembraneshapehomeostasisatthenanoscale
AT francesctebar amechanosensingmechanismcontrolsplasmamembraneshapehomeostasisatthenanoscale
AT xaviertrepat amechanosensingmechanismcontrolsplasmamembraneshapehomeostasisatthenanoscale
AT robertgparton amechanosensingmechanismcontrolsplasmamembraneshapehomeostasisatthenanoscale
AT mariaisabelgeli amechanosensingmechanismcontrolsplasmamembraneshapehomeostasisatthenanoscale
AT giorgioscita amechanosensingmechanismcontrolsplasmamembraneshapehomeostasisatthenanoscale
AT marinoarroyo amechanosensingmechanismcontrolsplasmamembraneshapehomeostasisatthenanoscale
AT anabelliseleroux amechanosensingmechanismcontrolsplasmamembraneshapehomeostasisatthenanoscale
AT pererocacusachs amechanosensingmechanismcontrolsplasmamembraneshapehomeostasisatthenanoscale
AT xarxaquiroga mechanosensingmechanismcontrolsplasmamembraneshapehomeostasisatthenanoscale
AT nikhilwalani mechanosensingmechanismcontrolsplasmamembraneshapehomeostasisatthenanoscale
AT andreadisanza mechanosensingmechanismcontrolsplasmamembraneshapehomeostasisatthenanoscale
AT albertchavero mechanosensingmechanismcontrolsplasmamembraneshapehomeostasisatthenanoscale
AT alexandramittens mechanosensingmechanismcontrolsplasmamembraneshapehomeostasisatthenanoscale
AT francesctebar mechanosensingmechanismcontrolsplasmamembraneshapehomeostasisatthenanoscale
AT xaviertrepat mechanosensingmechanismcontrolsplasmamembraneshapehomeostasisatthenanoscale
AT robertgparton mechanosensingmechanismcontrolsplasmamembraneshapehomeostasisatthenanoscale
AT mariaisabelgeli mechanosensingmechanismcontrolsplasmamembraneshapehomeostasisatthenanoscale
AT giorgioscita mechanosensingmechanismcontrolsplasmamembraneshapehomeostasisatthenanoscale
AT marinoarroyo mechanosensingmechanismcontrolsplasmamembraneshapehomeostasisatthenanoscale
AT anabelliseleroux mechanosensingmechanismcontrolsplasmamembraneshapehomeostasisatthenanoscale
AT pererocacusachs mechanosensingmechanismcontrolsplasmamembraneshapehomeostasisatthenanoscale