Genome-Wide Analysis of the MADS-Box Gene Family in Maize: Gene Structure, Evolution, and Relationships

The MADS-box gene family is one of the largest families in plants and plays an important roles in floral development. The MADS-box family includes the SRF-like domain and K-box domain. It is considered that the MADS-box gene family encodes a DNA-binding domain that is generally related to transcript...

Full description

Bibliographic Details
Main Authors: Da Zhao, Zheng Chen, Lei Xu, Lijun Zhang, Quan Zou
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Genes
Subjects:
Online Access:https://www.mdpi.com/2073-4425/12/12/1956
Description
Summary:The MADS-box gene family is one of the largest families in plants and plays an important roles in floral development. The MADS-box family includes the SRF-like domain and K-box domain. It is considered that the MADS-box gene family encodes a DNA-binding domain that is generally related to transcription factors, and plays important roles in regulating floral development. Our study identified 211 MADS-box protein sequences in the <i>Zea mays</i> proteome and renamed all the genes based on the gene annotations. All the 211 MADS-box protein sequences were coded by 98 expressed genes. Phylogenetic analysis of the MADS-box genes showed that all the family members were categorized into five subfamilies: MIKC-type, Mα, Mβ, Mγ, and Mδ. Gene duplications are regarded as products of several types of errors during the period of DNA replication and reconstruction; in our study all the 98 MADS-box genes contained 22 pairs of segmentally duplicated events which were distributed on 10 chromosomes. We compared expression data in different tissues from the female spikelet, silk, pericarp aleurone, ear primordium, leaf zone, vegetative meristem, internode, endosperm crown, mature pollen, embryo, root cortex, secondary root, germination kernels, primary root, root elongation zone, and root meristem. According to analysis of gene ontology pathways, we found a total of 41 pathways in which MADS-box genes in maize are involved. All the studies we conducted provided an overview of MADS-box gene family members in maize and showed multiple functions as transcription factors. The related research of MADS-box domains has provided the theoretical basis of MADS-box domains for agricultural applications.
ISSN:2073-4425