Mesoporous Silica Nanoparticles for pH-Responsive Delivery of Iridium Metallotherapeutics and Treatment of Glioblastoma Multiforme

Using nanoparticles for controlled drug delivery to cancer, in response to its weakly acidic environment, represents a promising approach toward increasing the effectiveness and reducing the adverse effects of cancer therapy. Hence, the aim of this study is to construct novel mesoporous silica nanop...

Full description

Bibliographic Details
Main Authors: Nikola Ž. Knežević, Nebojša Ilić, Goran N. Kaluđerović
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Inorganics
Subjects:
Online Access:https://www.mdpi.com/2304-6740/10/12/250
Description
Summary:Using nanoparticles for controlled drug delivery to cancer, in response to its weakly acidic environment, represents a promising approach toward increasing the effectiveness and reducing the adverse effects of cancer therapy. Hence, the aim of this study is to construct novel mesoporous silica nanoparticle (MSN)-based acidification-responsive drug delivery systems for targeted cancer therapy. Herein, the surface of MSN is covalently functionalized with Ir(III)-based complex through a pH-cleavable hydrazone-based linker and characterized by nitrogen sorption, SEM, FTIR, EDS, TGA, DSC, DLS, and zeta potential measurements. Enhanced release of Ir(III)-complexes is evidenced by UV/VIS spectroscopy at the weakly acidic environments (pH 5 and pH 6) in comparison to the release at physiological conditions. The in vitro toxicity of the prepared materials is tested on healthy MRC-5 cells while their potential for the efficient treatment of glioblastoma multiforme is demonstrated on the U251 cell line.
ISSN:2304-6740