Complex multiple introductions drive fall armyworm invasions into Asia and Australia

Abstract The fall armyworm (FAW) Spodoptera frugiperda is thought to have undergone a rapid ‘west-to-east’ spread since 2016 when it was first identified in western Africa. Between 2018 and 2020, it was recorded from South Asia (SA), Southeast Asia (SEA), East Asia (EA), and Pacific/Australia (PA)....

Full description

Bibliographic Details
Main Authors: Rahul Rane, Thomas K. Walsh, Pauline Lenancker, Andrew Gock, Thi Hang Dao, Van Liem Nguyen, Thein Nyunt Khin, Divina Amalin, Khonesavanh Chittarath, Muhammad Faheem, Sivapragasam Annamalai, Sathis Sri Thanarajoo, Y. Andi Trisyono, Sathya Khay, Juil Kim, Lastus Kuniata, Kevin Powell, Andrew Kalyebi, Michael H. Otim, Kiwoong Nam, Emmanuelle d’Alençon, Karl H. J. Gordon, Wee Tek Tay
Format: Article
Language:English
Published: Nature Portfolio 2023-01-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-023-27501-x
_version_ 1797952518255280128
author Rahul Rane
Thomas K. Walsh
Pauline Lenancker
Andrew Gock
Thi Hang Dao
Van Liem Nguyen
Thein Nyunt Khin
Divina Amalin
Khonesavanh Chittarath
Muhammad Faheem
Sivapragasam Annamalai
Sathis Sri Thanarajoo
Y. Andi Trisyono
Sathya Khay
Juil Kim
Lastus Kuniata
Kevin Powell
Andrew Kalyebi
Michael H. Otim
Kiwoong Nam
Emmanuelle d’Alençon
Karl H. J. Gordon
Wee Tek Tay
author_facet Rahul Rane
Thomas K. Walsh
Pauline Lenancker
Andrew Gock
Thi Hang Dao
Van Liem Nguyen
Thein Nyunt Khin
Divina Amalin
Khonesavanh Chittarath
Muhammad Faheem
Sivapragasam Annamalai
Sathis Sri Thanarajoo
Y. Andi Trisyono
Sathya Khay
Juil Kim
Lastus Kuniata
Kevin Powell
Andrew Kalyebi
Michael H. Otim
Kiwoong Nam
Emmanuelle d’Alençon
Karl H. J. Gordon
Wee Tek Tay
author_sort Rahul Rane
collection DOAJ
description Abstract The fall armyworm (FAW) Spodoptera frugiperda is thought to have undergone a rapid ‘west-to-east’ spread since 2016 when it was first identified in western Africa. Between 2018 and 2020, it was recorded from South Asia (SA), Southeast Asia (SEA), East Asia (EA), and Pacific/Australia (PA). Population genomic analyses enabled the understanding of pathways, population sources, and gene flow in this notorious agricultural pest species. Using neutral single nucleotide polymorphic (SNP) DNA markers, we detected genome introgression that suggested most populations in this study were overwhelmingly C- and R-strain hybrids (n = 252/262). SNP and mitochondrial DNA markers identified multiple introductions that were most parsimoniously explained by anthropogenic-assisted spread, i.e., associated with international trade of live/fresh plants and plant products, and involved ‘bridgehead populations’ in countries to enable successful pest establishment in neighbouring countries. Distinct population genomic signatures between Myanmar and China do not support the ‘African origin spread’ nor the ‘Myanmar source population to China’ hypotheses. Significant genetic differentiation between populations from different Australian states supported multiple pathways involving distinct SEA populations. Our study identified Asia as a biosecurity hotspot and a FAW genetic melting pot, and demonstrated the use of genome analysis to disentangle preventable human-assisted pest introductions from unpreventable natural pest spread.
first_indexed 2024-04-10T22:48:42Z
format Article
id doaj.art-e433f663e45b41378282ca6335f01ce3
institution Directory Open Access Journal
issn 2045-2322
language English
last_indexed 2024-04-10T22:48:42Z
publishDate 2023-01-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj.art-e433f663e45b41378282ca6335f01ce32023-01-15T12:12:48ZengNature PortfolioScientific Reports2045-23222023-01-0113111810.1038/s41598-023-27501-xComplex multiple introductions drive fall armyworm invasions into Asia and AustraliaRahul Rane0Thomas K. Walsh1Pauline Lenancker2Andrew Gock3Thi Hang Dao4Van Liem Nguyen5Thein Nyunt Khin6Divina Amalin7Khonesavanh Chittarath8Muhammad Faheem9Sivapragasam Annamalai10Sathis Sri Thanarajoo11Y. Andi Trisyono12Sathya Khay13Juil Kim14Lastus Kuniata15Kevin Powell16Andrew Kalyebi17Michael H. Otim18Kiwoong Nam19Emmanuelle d’Alençon20Karl H. J. Gordon21Wee Tek Tay22CSIRO, 343 Royal Parade, ParkvilleCSIRO, Black Mountain LaboratoriesSugar Research AustraliaCSIRO, Black Mountain LaboratoriesPlant Protection Research InstitutePlant Protection Research InstituteDepartment of Agricultural Research, YezinDepartment of Biology, De La Salle UniversityDepartment of Agriculture, Plant Protection CenterCAB International Southeast Asia, SerdangCAB International Southeast Asia, SerdangCAB International Southeast Asia, SerdangDepartment of Plant Protection, Faculty of Agriculture, Universitas Gadjah MadaPlant Protection Division of CARDI, Ministry of Agriculture, Forestry and FisheriesCollege of Agriculture and Life Science, Kangwon National UniversityNew Britain Palm Oil, Ramu Agri Industry Ltd.Sugar Research AustraliaAJSKNational Crops Resources Research InstituteDGIMI, Université Montpellier, INRAEDGIMI, Université Montpellier, INRAECSIRO, Black Mountain LaboratoriesCSIRO, Black Mountain LaboratoriesAbstract The fall armyworm (FAW) Spodoptera frugiperda is thought to have undergone a rapid ‘west-to-east’ spread since 2016 when it was first identified in western Africa. Between 2018 and 2020, it was recorded from South Asia (SA), Southeast Asia (SEA), East Asia (EA), and Pacific/Australia (PA). Population genomic analyses enabled the understanding of pathways, population sources, and gene flow in this notorious agricultural pest species. Using neutral single nucleotide polymorphic (SNP) DNA markers, we detected genome introgression that suggested most populations in this study were overwhelmingly C- and R-strain hybrids (n = 252/262). SNP and mitochondrial DNA markers identified multiple introductions that were most parsimoniously explained by anthropogenic-assisted spread, i.e., associated with international trade of live/fresh plants and plant products, and involved ‘bridgehead populations’ in countries to enable successful pest establishment in neighbouring countries. Distinct population genomic signatures between Myanmar and China do not support the ‘African origin spread’ nor the ‘Myanmar source population to China’ hypotheses. Significant genetic differentiation between populations from different Australian states supported multiple pathways involving distinct SEA populations. Our study identified Asia as a biosecurity hotspot and a FAW genetic melting pot, and demonstrated the use of genome analysis to disentangle preventable human-assisted pest introductions from unpreventable natural pest spread.https://doi.org/10.1038/s41598-023-27501-x
spellingShingle Rahul Rane
Thomas K. Walsh
Pauline Lenancker
Andrew Gock
Thi Hang Dao
Van Liem Nguyen
Thein Nyunt Khin
Divina Amalin
Khonesavanh Chittarath
Muhammad Faheem
Sivapragasam Annamalai
Sathis Sri Thanarajoo
Y. Andi Trisyono
Sathya Khay
Juil Kim
Lastus Kuniata
Kevin Powell
Andrew Kalyebi
Michael H. Otim
Kiwoong Nam
Emmanuelle d’Alençon
Karl H. J. Gordon
Wee Tek Tay
Complex multiple introductions drive fall armyworm invasions into Asia and Australia
Scientific Reports
title Complex multiple introductions drive fall armyworm invasions into Asia and Australia
title_full Complex multiple introductions drive fall armyworm invasions into Asia and Australia
title_fullStr Complex multiple introductions drive fall armyworm invasions into Asia and Australia
title_full_unstemmed Complex multiple introductions drive fall armyworm invasions into Asia and Australia
title_short Complex multiple introductions drive fall armyworm invasions into Asia and Australia
title_sort complex multiple introductions drive fall armyworm invasions into asia and australia
url https://doi.org/10.1038/s41598-023-27501-x
work_keys_str_mv AT rahulrane complexmultipleintroductionsdrivefallarmyworminvasionsintoasiaandaustralia
AT thomaskwalsh complexmultipleintroductionsdrivefallarmyworminvasionsintoasiaandaustralia
AT paulinelenancker complexmultipleintroductionsdrivefallarmyworminvasionsintoasiaandaustralia
AT andrewgock complexmultipleintroductionsdrivefallarmyworminvasionsintoasiaandaustralia
AT thihangdao complexmultipleintroductionsdrivefallarmyworminvasionsintoasiaandaustralia
AT vanliemnguyen complexmultipleintroductionsdrivefallarmyworminvasionsintoasiaandaustralia
AT theinnyuntkhin complexmultipleintroductionsdrivefallarmyworminvasionsintoasiaandaustralia
AT divinaamalin complexmultipleintroductionsdrivefallarmyworminvasionsintoasiaandaustralia
AT khonesavanhchittarath complexmultipleintroductionsdrivefallarmyworminvasionsintoasiaandaustralia
AT muhammadfaheem complexmultipleintroductionsdrivefallarmyworminvasionsintoasiaandaustralia
AT sivapragasamannamalai complexmultipleintroductionsdrivefallarmyworminvasionsintoasiaandaustralia
AT sathissrithanarajoo complexmultipleintroductionsdrivefallarmyworminvasionsintoasiaandaustralia
AT yanditrisyono complexmultipleintroductionsdrivefallarmyworminvasionsintoasiaandaustralia
AT sathyakhay complexmultipleintroductionsdrivefallarmyworminvasionsintoasiaandaustralia
AT juilkim complexmultipleintroductionsdrivefallarmyworminvasionsintoasiaandaustralia
AT lastuskuniata complexmultipleintroductionsdrivefallarmyworminvasionsintoasiaandaustralia
AT kevinpowell complexmultipleintroductionsdrivefallarmyworminvasionsintoasiaandaustralia
AT andrewkalyebi complexmultipleintroductionsdrivefallarmyworminvasionsintoasiaandaustralia
AT michaelhotim complexmultipleintroductionsdrivefallarmyworminvasionsintoasiaandaustralia
AT kiwoongnam complexmultipleintroductionsdrivefallarmyworminvasionsintoasiaandaustralia
AT emmanuelledalencon complexmultipleintroductionsdrivefallarmyworminvasionsintoasiaandaustralia
AT karlhjgordon complexmultipleintroductionsdrivefallarmyworminvasionsintoasiaandaustralia
AT weetektay complexmultipleintroductionsdrivefallarmyworminvasionsintoasiaandaustralia