Batalin-Vilkovisky formality for Chern-Simons theory

Abstract We prove that the differential graded Lie algebra of functionals associated to the Chern-Simons theory of a semisimple Lie algebra is homotopy abelian. For a general field theory, we show that the variational complex in the Batalin-Vilkovisky formalism is a differential graded Lie algebra.

Bibliographic Details
Main Author: Ezra Getzler
Format: Article
Language:English
Published: SpringerOpen 2021-12-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP12(2021)105
_version_ 1818363052156780544
author Ezra Getzler
author_facet Ezra Getzler
author_sort Ezra Getzler
collection DOAJ
description Abstract We prove that the differential graded Lie algebra of functionals associated to the Chern-Simons theory of a semisimple Lie algebra is homotopy abelian. For a general field theory, we show that the variational complex in the Batalin-Vilkovisky formalism is a differential graded Lie algebra.
first_indexed 2024-12-13T21:42:20Z
format Article
id doaj.art-e434e0202fda4ab29800420298701e4d
institution Directory Open Access Journal
issn 1029-8479
language English
last_indexed 2024-12-13T21:42:20Z
publishDate 2021-12-01
publisher SpringerOpen
record_format Article
series Journal of High Energy Physics
spelling doaj.art-e434e0202fda4ab29800420298701e4d2022-12-21T23:30:30ZengSpringerOpenJournal of High Energy Physics1029-84792021-12-0120211212410.1007/JHEP12(2021)105Batalin-Vilkovisky formality for Chern-Simons theoryEzra Getzler0Department of Mathematics, Northwestern UniversityAbstract We prove that the differential graded Lie algebra of functionals associated to the Chern-Simons theory of a semisimple Lie algebra is homotopy abelian. For a general field theory, we show that the variational complex in the Batalin-Vilkovisky formalism is a differential graded Lie algebra.https://doi.org/10.1007/JHEP12(2021)105Chern-Simons TheoriesBRST QuantizationTopological Field Theories
spellingShingle Ezra Getzler
Batalin-Vilkovisky formality for Chern-Simons theory
Journal of High Energy Physics
Chern-Simons Theories
BRST Quantization
Topological Field Theories
title Batalin-Vilkovisky formality for Chern-Simons theory
title_full Batalin-Vilkovisky formality for Chern-Simons theory
title_fullStr Batalin-Vilkovisky formality for Chern-Simons theory
title_full_unstemmed Batalin-Vilkovisky formality for Chern-Simons theory
title_short Batalin-Vilkovisky formality for Chern-Simons theory
title_sort batalin vilkovisky formality for chern simons theory
topic Chern-Simons Theories
BRST Quantization
Topological Field Theories
url https://doi.org/10.1007/JHEP12(2021)105
work_keys_str_mv AT ezragetzler batalinvilkoviskyformalityforchernsimonstheory