Structural analyses of a constitutively active mutant of exchange protein directly activated by cAMP.
Exchange proteins directly activated by cAMP (EPACs) are important allosteric regulators of cAMP-mediated signal transduction pathways. To understand the molecular mechanism of EPAC activation, we have combined site-directed mutagenesis, X-ray crystallography, and peptide amide hydrogen/deuterium ex...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2012-01-01
|
Series: | PLoS ONE |
Online Access: | https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23189173/?tool=EBI |
Summary: | Exchange proteins directly activated by cAMP (EPACs) are important allosteric regulators of cAMP-mediated signal transduction pathways. To understand the molecular mechanism of EPAC activation, we have combined site-directed mutagenesis, X-ray crystallography, and peptide amide hydrogen/deuterium exchange mass spectrometry (DXMS) to probe the structural and conformational dynamics of EPAC2-F435G, a constitutively active EPAC2 mutant. Our study demonstrates that conformational dynamics plays a critical role in cAMP-induced EPAC activation. A glycine mutation at 435 position shifts the equilibrium of conformational dynamics towards the extended active conformation. |
---|---|
ISSN: | 1932-6203 |