Silicon-carbide (SiC) nanocrystal as technology and characterization and its applications in photo-stabilizers of Teflon

Polytetrafluoroethylene (PTFE) was mixed with silicon carbide nanoparticles in various quantities to create thin films. Long-term UV light exposure to the PTFE films was used to study the effects of SiC NPs as a photo-stabilizer by assessing changes in weight loss and surface shape. Comparing PTFE f...

Full description

Bibliographic Details
Main Authors: Raghda Alsayed, Dina S. Ahmed, Amani Husain, Mohammed Al-Baidhani, Mohammed Al-Mashhadani, Alaa A. Rashad, Muna Bufaroosha, Emad Yousif
Format: Article
Language:English
Published: KeAi Communications Co., Ltd. 2023-01-01
Series:Materials Science for Energy Technologies
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589299122000660
Description
Summary:Polytetrafluoroethylene (PTFE) was mixed with silicon carbide nanoparticles in various quantities to create thin films. Long-term UV light exposure to the PTFE films was used to study the effects of SiC NPs as a photo-stabilizer by assessing changes in weight loss and surface shape. Comparing PTFE films with various SiC NP concentrations to the blank film, very little variation was seen. AFM and optical microscopy were also used to analyze the surface morphology of films. When PTFE films with additives were compared to blank film, there were hard to observe any negative changes brought due to photo-degradation. Additionally, the surfaces appeared more uniformly smooth hence SiC NPs work well as photo-stabilizers to impede photo-degradation, particularly 0.0005 gm weight. Silicon carbide nanoparticles absorb ultraviolet light, bind polymeric chains, scavenge radical moieties, and degrade peroxide residues.
ISSN:2589-2991