On quasi-Herglotz functions in one variable

In this paper, the class of (complex) quasi-Herglotz functions is introduced as the complex vector space generated by the convex cone of ordinary Herglotz functions. We prove characterization theorems, in particular, an analytic characterization. The subclasses of quasi-Herglotz functions that are i...

Full description

Bibliographic Details
Main Authors: Luger, Annemarie, Nedic, Mitja
Format: Article
Language:English
Published: Académie des sciences 2022-09-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.364/
Description
Summary:In this paper, the class of (complex) quasi-Herglotz functions is introduced as the complex vector space generated by the convex cone of ordinary Herglotz functions. We prove characterization theorems, in particular, an analytic characterization. The subclasses of quasi-Herglotz functions that are identically zero in one half-plane as well as rational quasi-Herglotz functions are investigated in detail. Moreover, we relate to other areas such as weighted Hardy spaces, definitizable functions, the Cauchy transform on the unit circle, sum-rule identities and matrix-valued Herglotz functions.
ISSN:1778-3569