Toll-like receptor agonist combinations augment mouse T-cell anti-tumor immunity via IL-12- and interferon ß-mediated suppression of immune checkpoint receptor expression

We previously found that activated CD8+ T-cells increase expression of PD-1, which can be attenuated in the presence of specific Toll-like receptor (TLR) agonists, mediated by IL-12 secreted by professional antigen-presenting cells. While these CD8+ T-cells had greater anti-tumor activity, T-cells s...

Full description

Bibliographic Details
Main Authors: Donghwan Jeon, Douglas G. McNeel
Format: Article
Language:English
Published: Taylor & Francis Group 2022-12-01
Series:OncoImmunology
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/2162402X.2022.2054758
Description
Summary:We previously found that activated CD8+ T-cells increase expression of PD-1, which can be attenuated in the presence of specific Toll-like receptor (TLR) agonists, mediated by IL-12 secreted by professional antigen-presenting cells. While these CD8+ T-cells had greater anti-tumor activity, T-cells stimulated by different TLR had different gene expression profiles. Consequently, we sought to determine whether combinations of TLR agonists might further affect the expression of T-cell checkpoint receptors and improve T-cell anti-tumor immunity. Activation of CD8+ T-cells in the presence of specific TLR ligands resulted in decreased expression of PD-1, LAG-3, and CD160, notably with combinations of TLR1/2, TLR3, and TLR9 agonists. Immunization of E.G7-OVA or TRAMP-C1 tumor-bearing mice with peptide or DNA vaccines, co-administered with combination of TLR3 and TLR9 agonists, showed greater suppression of tumor growth. The anti-tumor effect of TLR1/2 and/or TLR9, but not TLR3, was abrogated in IL-12KO mice. RNA sequencing of TLR-conditioned CD8+ T-cells revealed IL-12 pathway activation, and type 1 IFN pathway activation following TLR3 stimulation. Our results provide a mechanistic rationale for the choice of optimal combinations of TLR ligands to use as adjuvants to improve the efficacy of anti-tumor vaccines.
ISSN:2162-402X