Deep Learning Algorithm for Automated Cardiac Murmur Detection via a Digital Stethoscope Platform

Background Clinicians vary markedly in their ability to detect murmurs during cardiac auscultation and identify the underlying pathological features. Deep learning approaches have shown promise in medicine by transforming collected data into clinically significant information. The objective of this...

Full description

Bibliographic Details
Main Authors: John S. Chorba, Avi M. Shapiro, Le Le, John Maidens, John Prince, Steve Pham, Mia M. Kanzawa, Daniel N. Barbosa, Caroline Currie, Catherine Brooks, Brent E. White, Anna Huskin, Jason Paek, Jack Geocaris, Dinatu Elnathan, Ria Ronquillo, Roy Kim, Zenith H. Alam, Vaikom S. Mahadevan, Sophie G. Fuller, Grant W. Stalker, Sara A. Bravo, Dina Jean, John J. Lee, Medeona Gjergjindreaj, Christos G. Mihos, Steven T. Forman, Subramaniam Venkatraman, Patrick M. McCarthy, James D. Thomas
Format: Article
Language:English
Published: Wiley 2021-05-01
Series:Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease
Subjects:
Online Access:https://www.ahajournals.org/doi/10.1161/JAHA.120.019905
_version_ 1811332298055876608
author John S. Chorba
Avi M. Shapiro
Le Le
John Maidens
John Prince
Steve Pham
Mia M. Kanzawa
Daniel N. Barbosa
Caroline Currie
Catherine Brooks
Brent E. White
Anna Huskin
Jason Paek
Jack Geocaris
Dinatu Elnathan
Ria Ronquillo
Roy Kim
Zenith H. Alam
Vaikom S. Mahadevan
Sophie G. Fuller
Grant W. Stalker
Sara A. Bravo
Dina Jean
John J. Lee
Medeona Gjergjindreaj
Christos G. Mihos
Steven T. Forman
Subramaniam Venkatraman
Patrick M. McCarthy
James D. Thomas
author_facet John S. Chorba
Avi M. Shapiro
Le Le
John Maidens
John Prince
Steve Pham
Mia M. Kanzawa
Daniel N. Barbosa
Caroline Currie
Catherine Brooks
Brent E. White
Anna Huskin
Jason Paek
Jack Geocaris
Dinatu Elnathan
Ria Ronquillo
Roy Kim
Zenith H. Alam
Vaikom S. Mahadevan
Sophie G. Fuller
Grant W. Stalker
Sara A. Bravo
Dina Jean
John J. Lee
Medeona Gjergjindreaj
Christos G. Mihos
Steven T. Forman
Subramaniam Venkatraman
Patrick M. McCarthy
James D. Thomas
author_sort John S. Chorba
collection DOAJ
description Background Clinicians vary markedly in their ability to detect murmurs during cardiac auscultation and identify the underlying pathological features. Deep learning approaches have shown promise in medicine by transforming collected data into clinically significant information. The objective of this research is to assess the performance of a deep learning algorithm to detect murmurs and clinically significant valvular heart disease using recordings from a commercial digital stethoscope platform. Methods and Results Using >34 hours of previously acquired and annotated heart sound recordings, we trained a deep neural network to detect murmurs. To test the algorithm, we enrolled 962 patients in a clinical study and collected recordings at the 4 primary auscultation locations. Ground truth was established using patient echocardiograms and annotations by 3 expert cardiologists. Algorithm performance for detecting murmurs has sensitivity and specificity of 76.3% and 91.4%, respectively. By omitting softer murmurs, those with grade 1 intensity, sensitivity increased to 90.0%. Application of the algorithm at the appropriate anatomic auscultation location detected moderate‐to‐severe or greater aortic stenosis, with sensitivity of 93.2% and specificity of 86.0%, and moderate‐to‐severe or greater mitral regurgitation, with sensitivity of 66.2% and specificity of 94.6%. Conclusions The deep learning algorithm’s ability to detect murmurs and clinically significant aortic stenosis and mitral regurgitation is comparable to expert cardiologists based on the annotated subset of our database. The findings suggest that such algorithms would have utility as front‐line clinical support tools to aid clinicians in screening for cardiac murmurs caused by valvular heart disease. Registration URL: https://clinicaltrials.gov; Unique Identifier: NCT03458806.
first_indexed 2024-04-13T16:34:42Z
format Article
id doaj.art-e45493abbc90480aa8c8c373ac9ed160
institution Directory Open Access Journal
issn 2047-9980
language English
last_indexed 2024-04-13T16:34:42Z
publishDate 2021-05-01
publisher Wiley
record_format Article
series Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease
spelling doaj.art-e45493abbc90480aa8c8c373ac9ed1602022-12-22T02:39:28ZengWileyJournal of the American Heart Association: Cardiovascular and Cerebrovascular Disease2047-99802021-05-0110910.1161/JAHA.120.019905Deep Learning Algorithm for Automated Cardiac Murmur Detection via a Digital Stethoscope PlatformJohn S. Chorba0Avi M. Shapiro1Le Le2John Maidens3John Prince4Steve Pham5Mia M. Kanzawa6Daniel N. Barbosa7Caroline Currie8Catherine Brooks9Brent E. White10Anna Huskin11Jason Paek12Jack Geocaris13Dinatu Elnathan14Ria Ronquillo15Roy Kim16Zenith H. Alam17Vaikom S. Mahadevan18Sophie G. Fuller19Grant W. Stalker20Sara A. Bravo21Dina Jean22John J. Lee23Medeona Gjergjindreaj24Christos G. Mihos25Steven T. Forman26Subramaniam Venkatraman27Patrick M. McCarthy28James D. Thomas29Division of Cardiology University of California San Francisco San Francisco CAEko Oakland CAEko Oakland CAEko Oakland CAEko Oakland CAEko Oakland CAEko Oakland CAEko Oakland CAEko Oakland CAEko Oakland CADivision of Cardiology Bluhm Cardiovascular InstituteNorthwestern University Chicago ILDivision of Cardiology Bluhm Cardiovascular InstituteNorthwestern University Chicago ILDivision of Cardiology Bluhm Cardiovascular InstituteNorthwestern University Chicago ILDivision of Cardiology Bluhm Cardiovascular InstituteNorthwestern University Chicago ILDivision of Cardiology Bluhm Cardiovascular InstituteNorthwestern University Chicago ILLos Alamitos Cardiovascular Medical Group Los Alamitos CALos Alamitos Cardiovascular Medical Group Los Alamitos CAEchocardiography Laboratory Mount Sinai Heart InstituteMount Sinai Medical Center Miami Beach FLDivision of Cardiology University of California San Francisco San Francisco CADivision of Cardiology University of California San Francisco San Francisco CADivision of Cardiology University of California San Francisco San Francisco CADivision of Cardiology University of California San Francisco San Francisco CADivision of Cardiology University of California San Francisco San Francisco CAEchocardiography Laboratory Mount Sinai Heart InstituteMount Sinai Medical Center Miami Beach FLEchocardiography Laboratory Mount Sinai Heart InstituteMount Sinai Medical Center Miami Beach FLEchocardiography Laboratory Mount Sinai Heart InstituteMount Sinai Medical Center Miami Beach FLLos Alamitos Cardiovascular Medical Group Los Alamitos CAEko Oakland CADivision of Cardiology Bluhm Cardiovascular InstituteNorthwestern University Chicago ILDivision of Cardiology Bluhm Cardiovascular InstituteNorthwestern University Chicago ILBackground Clinicians vary markedly in their ability to detect murmurs during cardiac auscultation and identify the underlying pathological features. Deep learning approaches have shown promise in medicine by transforming collected data into clinically significant information. The objective of this research is to assess the performance of a deep learning algorithm to detect murmurs and clinically significant valvular heart disease using recordings from a commercial digital stethoscope platform. Methods and Results Using >34 hours of previously acquired and annotated heart sound recordings, we trained a deep neural network to detect murmurs. To test the algorithm, we enrolled 962 patients in a clinical study and collected recordings at the 4 primary auscultation locations. Ground truth was established using patient echocardiograms and annotations by 3 expert cardiologists. Algorithm performance for detecting murmurs has sensitivity and specificity of 76.3% and 91.4%, respectively. By omitting softer murmurs, those with grade 1 intensity, sensitivity increased to 90.0%. Application of the algorithm at the appropriate anatomic auscultation location detected moderate‐to‐severe or greater aortic stenosis, with sensitivity of 93.2% and specificity of 86.0%, and moderate‐to‐severe or greater mitral regurgitation, with sensitivity of 66.2% and specificity of 94.6%. Conclusions The deep learning algorithm’s ability to detect murmurs and clinically significant aortic stenosis and mitral regurgitation is comparable to expert cardiologists based on the annotated subset of our database. The findings suggest that such algorithms would have utility as front‐line clinical support tools to aid clinicians in screening for cardiac murmurs caused by valvular heart disease. Registration URL: https://clinicaltrials.gov; Unique Identifier: NCT03458806.https://www.ahajournals.org/doi/10.1161/JAHA.120.019905auscultationmachine learningneural networksphysical examinationvalvular heart disease
spellingShingle John S. Chorba
Avi M. Shapiro
Le Le
John Maidens
John Prince
Steve Pham
Mia M. Kanzawa
Daniel N. Barbosa
Caroline Currie
Catherine Brooks
Brent E. White
Anna Huskin
Jason Paek
Jack Geocaris
Dinatu Elnathan
Ria Ronquillo
Roy Kim
Zenith H. Alam
Vaikom S. Mahadevan
Sophie G. Fuller
Grant W. Stalker
Sara A. Bravo
Dina Jean
John J. Lee
Medeona Gjergjindreaj
Christos G. Mihos
Steven T. Forman
Subramaniam Venkatraman
Patrick M. McCarthy
James D. Thomas
Deep Learning Algorithm for Automated Cardiac Murmur Detection via a Digital Stethoscope Platform
Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease
auscultation
machine learning
neural networks
physical examination
valvular heart disease
title Deep Learning Algorithm for Automated Cardiac Murmur Detection via a Digital Stethoscope Platform
title_full Deep Learning Algorithm for Automated Cardiac Murmur Detection via a Digital Stethoscope Platform
title_fullStr Deep Learning Algorithm for Automated Cardiac Murmur Detection via a Digital Stethoscope Platform
title_full_unstemmed Deep Learning Algorithm for Automated Cardiac Murmur Detection via a Digital Stethoscope Platform
title_short Deep Learning Algorithm for Automated Cardiac Murmur Detection via a Digital Stethoscope Platform
title_sort deep learning algorithm for automated cardiac murmur detection via a digital stethoscope platform
topic auscultation
machine learning
neural networks
physical examination
valvular heart disease
url https://www.ahajournals.org/doi/10.1161/JAHA.120.019905
work_keys_str_mv AT johnschorba deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform
AT avimshapiro deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform
AT lele deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform
AT johnmaidens deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform
AT johnprince deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform
AT stevepham deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform
AT miamkanzawa deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform
AT danielnbarbosa deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform
AT carolinecurrie deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform
AT catherinebrooks deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform
AT brentewhite deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform
AT annahuskin deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform
AT jasonpaek deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform
AT jackgeocaris deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform
AT dinatuelnathan deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform
AT riaronquillo deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform
AT roykim deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform
AT zenithhalam deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform
AT vaikomsmahadevan deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform
AT sophiegfuller deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform
AT grantwstalker deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform
AT saraabravo deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform
AT dinajean deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform
AT johnjlee deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform
AT medeonagjergjindreaj deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform
AT christosgmihos deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform
AT steventforman deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform
AT subramaniamvenkatraman deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform
AT patrickmmccarthy deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform
AT jamesdthomas deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform