Evaluation of Salinity Stress Effects on Seed Germination and Seedling Growth and Estimation of Protein Contents in Kodo Millet (Paspalum scrobiculatum L.)

Cereals in general and millets in particular have been identified as major food crops globally and increase in crop production is required to meet the demands of the ever increasing global population. However, continuous climatic variations or abiotic stresses have led the drastic reduction in food...

Full description

Bibliographic Details
Main Authors: Vikrant, N. Kothai, M. Roselin Roobavathi
Format: Article
Language:English
Published: "Vikol publishing" ST Kolesnichenko V.V. 2020-12-01
Series:Journal of Stress Physiology & Biochemistry
Subjects:
Online Access:http://www.jspb.ru/issues/2020/N4/JSPB_2020_4_70-81.pdf
_version_ 1818791578588676096
author Vikrant
N. Kothai
M. Roselin Roobavathi
author_facet Vikrant
N. Kothai
M. Roselin Roobavathi
author_sort Vikrant
collection DOAJ
description Cereals in general and millets in particular have been identified as major food crops globally and increase in crop production is required to meet the demands of the ever increasing global population. However, continuous climatic variations or abiotic stresses have led the drastic reduction in food grain yields. In view of affects of abiotic stresses on food crops plants, present study was undertaken to analyze the comparative responses of salinity stresses induced by various concentrations of NaCl (50mM, 100mM, 250mM and 500mM) and sea water (5%, 10%, 15%, 20%, 25%, 50%, 75% and 100%) during seed germination and seedling growth under ex-vitro conditions in kodo millet (Paspalum scrobiculatum L.). After 6-days and 12-days of salinity stress treatments, observations were recorded and after 12-days of treatments, results reveal that salinity stress caused by NaCl-salt concentration (250mM) proves to be very lethal causing strong seed germination and therefore, the mean germination frequency (33% ±0.530 was recorded while further increase in NaCl concentration (500mM) was found to be fully toxic and seed germination frequency was obtained as zero in comparison to control experiment (94% ±0.35). Similarly, in case of salinity stress induced by sea water treatments, 25% of the sea water concentration was found to cause strong promotion instead of inhibition and (71% ±0.17) of the seeds could exhibit promotion in germination frequency and further increase in sea water concentration (50%) and above was turned out to be fully toxic. Furthermore, during biochemical studies, protein contents in the tissues growing under NaCl-salinity stresses at (50mM, 100mM and 250mM) were estimated and significantly it was found to decline with the increase in concentration of NaCl-salt stress solutions. After 12th days of treatments, protein contents were found to be minimum (198.2 mg/g) in the tissues that were growing in high concentration of NaCl (250mM) solution than the control solution (476.4mg/g) grown tissues.
first_indexed 2024-12-18T15:13:35Z
format Article
id doaj.art-e47664d29d0a4ed5958eb86b3b5d5d2f
institution Directory Open Access Journal
issn 1997-0838
1997-0838
language English
last_indexed 2024-12-18T15:13:35Z
publishDate 2020-12-01
publisher "Vikol publishing" ST Kolesnichenko V.V.
record_format Article
series Journal of Stress Physiology & Biochemistry
spelling doaj.art-e47664d29d0a4ed5958eb86b3b5d5d2f2022-12-21T21:03:35Zeng"Vikol publishing" ST Kolesnichenko V.V.Journal of Stress Physiology & Biochemistry1997-08381997-08382020-12-011647081Evaluation of Salinity Stress Effects on Seed Germination and Seedling Growth and Estimation of Protein Contents in Kodo Millet (Paspalum scrobiculatum L.)Vikrant0N. Kothai1M. Roselin Roobavathi2 Department of Botany, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research (Autonomous), Puducherry- 605 008, IndiaDepartment of Botany, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research (Autonomous), Puducherry- 605 008, India.Department of Botany, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research (Autonomous), Puducherry- 605 008, IndiaCereals in general and millets in particular have been identified as major food crops globally and increase in crop production is required to meet the demands of the ever increasing global population. However, continuous climatic variations or abiotic stresses have led the drastic reduction in food grain yields. In view of affects of abiotic stresses on food crops plants, present study was undertaken to analyze the comparative responses of salinity stresses induced by various concentrations of NaCl (50mM, 100mM, 250mM and 500mM) and sea water (5%, 10%, 15%, 20%, 25%, 50%, 75% and 100%) during seed germination and seedling growth under ex-vitro conditions in kodo millet (Paspalum scrobiculatum L.). After 6-days and 12-days of salinity stress treatments, observations were recorded and after 12-days of treatments, results reveal that salinity stress caused by NaCl-salt concentration (250mM) proves to be very lethal causing strong seed germination and therefore, the mean germination frequency (33% ±0.530 was recorded while further increase in NaCl concentration (500mM) was found to be fully toxic and seed germination frequency was obtained as zero in comparison to control experiment (94% ±0.35). Similarly, in case of salinity stress induced by sea water treatments, 25% of the sea water concentration was found to cause strong promotion instead of inhibition and (71% ±0.17) of the seeds could exhibit promotion in germination frequency and further increase in sea water concentration (50%) and above was turned out to be fully toxic. Furthermore, during biochemical studies, protein contents in the tissues growing under NaCl-salinity stresses at (50mM, 100mM and 250mM) were estimated and significantly it was found to decline with the increase in concentration of NaCl-salt stress solutions. After 12th days of treatments, protein contents were found to be minimum (198.2 mg/g) in the tissues that were growing in high concentration of NaCl (250mM) solution than the control solution (476.4mg/g) grown tissues.http://www.jspb.ru/issues/2020/N4/JSPB_2020_4_70-81.pdfabiotic stresskodo milletproteinsalinitysea waterseed germinationseedling
spellingShingle Vikrant
N. Kothai
M. Roselin Roobavathi
Evaluation of Salinity Stress Effects on Seed Germination and Seedling Growth and Estimation of Protein Contents in Kodo Millet (Paspalum scrobiculatum L.)
Journal of Stress Physiology & Biochemistry
abiotic stress
kodo millet
protein
salinity
sea water
seed germination
seedling
title Evaluation of Salinity Stress Effects on Seed Germination and Seedling Growth and Estimation of Protein Contents in Kodo Millet (Paspalum scrobiculatum L.)
title_full Evaluation of Salinity Stress Effects on Seed Germination and Seedling Growth and Estimation of Protein Contents in Kodo Millet (Paspalum scrobiculatum L.)
title_fullStr Evaluation of Salinity Stress Effects on Seed Germination and Seedling Growth and Estimation of Protein Contents in Kodo Millet (Paspalum scrobiculatum L.)
title_full_unstemmed Evaluation of Salinity Stress Effects on Seed Germination and Seedling Growth and Estimation of Protein Contents in Kodo Millet (Paspalum scrobiculatum L.)
title_short Evaluation of Salinity Stress Effects on Seed Germination and Seedling Growth and Estimation of Protein Contents in Kodo Millet (Paspalum scrobiculatum L.)
title_sort evaluation of salinity stress effects on seed germination and seedling growth and estimation of protein contents in kodo millet paspalum scrobiculatum l
topic abiotic stress
kodo millet
protein
salinity
sea water
seed germination
seedling
url http://www.jspb.ru/issues/2020/N4/JSPB_2020_4_70-81.pdf
work_keys_str_mv AT vikrant evaluationofsalinitystresseffectsonseedgerminationandseedlinggrowthandestimationofproteincontentsinkodomilletpaspalumscrobiculatuml
AT nkothai evaluationofsalinitystresseffectsonseedgerminationandseedlinggrowthandestimationofproteincontentsinkodomilletpaspalumscrobiculatuml
AT mroselinroobavathi evaluationofsalinitystresseffectsonseedgerminationandseedlinggrowthandestimationofproteincontentsinkodomilletpaspalumscrobiculatuml