Stability of HIV-1 Dynamics Models with Viral and Cellular Infections in the Presence of Macrophages

In this research work, we suggest two mathematical models that take into account (i) two categories of target cells, CD<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>4</mn><mo>+</...

Full description

Bibliographic Details
Main Authors: Aeshah A. Raezah, Elsayed Dahy, E. Kh. Elnahary, Shaimaa A. Azoz
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/7/617
_version_ 1797590338517336064
author Aeshah A. Raezah
Elsayed Dahy
E. Kh. Elnahary
Shaimaa A. Azoz
author_facet Aeshah A. Raezah
Elsayed Dahy
E. Kh. Elnahary
Shaimaa A. Azoz
author_sort Aeshah A. Raezah
collection DOAJ
description In this research work, we suggest two mathematical models that take into account (i) two categories of target cells, CD<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>4</mn><mo>+</mo></msup></semantics></math></inline-formula>T cells and macrophages, and (ii) two modes of infection transmissions, the direct virus-to-cell (VTC) method and cell-to-cell (CTC) infection transmission, where CTC is an effective method of spreading human immunodeficiency virus type-1 (HIV-1), as with the VTC method. The second model incorporates four time delays. In both models, the presence of a bounded and positive solution of the biological model is investigated. The existence conditions of all equilibria are established. The basic reproduction number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">R</mi><mn>0</mn></msub></semantics></math></inline-formula> that identifies a disease index is obtained. Lyapunov functions are utilized to verify the global stability of all equilibria. The theoretical findings are verified through numerical simulations. According to the outcomes, the trajectories of the solutions approach the infection-free equilibrium and infection-present equilibrium when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">R</mi><mn>0</mn></msub><mo>≤</mo><mn>1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">R</mi><mn>0</mn></msub><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula>, respectively. Further, we study the sensitivity analysis to investigate how the values of all the parameters of the suggested model affect <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">R</mi><mn>0</mn></msub></semantics></math></inline-formula> for given data. We discuss the impact of the time delay on HIV-1 progression. We find that a longer time delay results in suppression of the HIV-1 infection and vice versa.
first_indexed 2024-03-11T01:19:02Z
format Article
id doaj.art-e483d4ea00e14e70b4917addad3d0e79
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-11T01:19:02Z
publishDate 2023-06-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-e483d4ea00e14e70b4917addad3d0e792023-11-18T18:17:03ZengMDPI AGAxioms2075-16802023-06-0112761710.3390/axioms12070617Stability of HIV-1 Dynamics Models with Viral and Cellular Infections in the Presence of MacrophagesAeshah A. Raezah0Elsayed Dahy1E. Kh. Elnahary2Shaimaa A. Azoz3Department of Mathematics, Faculty of Science, King Khalid University, Abha 62529, Saudi ArabiaDepartment of Mathematics, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut 71524, EgyptDepartment of Mathematics, Faculty of Science, Sohag University, Sohag 82524, EgyptDepartment of Mathematics, Faculty of Science, Assiut University, Assiut 71516, EgyptIn this research work, we suggest two mathematical models that take into account (i) two categories of target cells, CD<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>4</mn><mo>+</mo></msup></semantics></math></inline-formula>T cells and macrophages, and (ii) two modes of infection transmissions, the direct virus-to-cell (VTC) method and cell-to-cell (CTC) infection transmission, where CTC is an effective method of spreading human immunodeficiency virus type-1 (HIV-1), as with the VTC method. The second model incorporates four time delays. In both models, the presence of a bounded and positive solution of the biological model is investigated. The existence conditions of all equilibria are established. The basic reproduction number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">R</mi><mn>0</mn></msub></semantics></math></inline-formula> that identifies a disease index is obtained. Lyapunov functions are utilized to verify the global stability of all equilibria. The theoretical findings are verified through numerical simulations. According to the outcomes, the trajectories of the solutions approach the infection-free equilibrium and infection-present equilibrium when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">R</mi><mn>0</mn></msub><mo>≤</mo><mn>1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">R</mi><mn>0</mn></msub><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula>, respectively. Further, we study the sensitivity analysis to investigate how the values of all the parameters of the suggested model affect <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">R</mi><mn>0</mn></msub></semantics></math></inline-formula> for given data. We discuss the impact of the time delay on HIV-1 progression. We find that a longer time delay results in suppression of the HIV-1 infection and vice versa.https://www.mdpi.com/2075-1680/12/7/617HIV-1 infectionLyapunov functionglobal stabilitytime delaysensitivity analysis
spellingShingle Aeshah A. Raezah
Elsayed Dahy
E. Kh. Elnahary
Shaimaa A. Azoz
Stability of HIV-1 Dynamics Models with Viral and Cellular Infections in the Presence of Macrophages
Axioms
HIV-1 infection
Lyapunov function
global stability
time delay
sensitivity analysis
title Stability of HIV-1 Dynamics Models with Viral and Cellular Infections in the Presence of Macrophages
title_full Stability of HIV-1 Dynamics Models with Viral and Cellular Infections in the Presence of Macrophages
title_fullStr Stability of HIV-1 Dynamics Models with Viral and Cellular Infections in the Presence of Macrophages
title_full_unstemmed Stability of HIV-1 Dynamics Models with Viral and Cellular Infections in the Presence of Macrophages
title_short Stability of HIV-1 Dynamics Models with Viral and Cellular Infections in the Presence of Macrophages
title_sort stability of hiv 1 dynamics models with viral and cellular infections in the presence of macrophages
topic HIV-1 infection
Lyapunov function
global stability
time delay
sensitivity analysis
url https://www.mdpi.com/2075-1680/12/7/617
work_keys_str_mv AT aeshaharaezah stabilityofhiv1dynamicsmodelswithviralandcellularinfectionsinthepresenceofmacrophages
AT elsayeddahy stabilityofhiv1dynamicsmodelswithviralandcellularinfectionsinthepresenceofmacrophages
AT ekhelnahary stabilityofhiv1dynamicsmodelswithviralandcellularinfectionsinthepresenceofmacrophages
AT shaimaaaazoz stabilityofhiv1dynamicsmodelswithviralandcellularinfectionsinthepresenceofmacrophages