A Parametric Resonance for the Nonlocal Hirota–Maccari Equation

The nonlocal Hirota–Maccari equation is considered when a parametric excitation is acting over the frequency of a generic mode. Using the well-known asymptotic perturbation (AP) method, two coupled equations for the amplitude and phase can be obtained. We discovered the existence of an infinite-peri...

Full description

Bibliographic Details
Main Author: Attilio Maccari
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/14/7/1444
Description
Summary:The nonlocal Hirota–Maccari equation is considered when a parametric excitation is acting over the frequency of a generic mode. Using the well-known asymptotic perturbation (AP) method, two coupled equations for the amplitude and phase can be obtained. We discovered the existence of an infinite-period bifurcation when the parametric force increases its value. Moreover, symmetry considerations suggest performing a global analysis of the two couples, in such a way that we find an energy-like function and corroborate and verify the existence of this infinite period bifurcation.
ISSN:2073-8994