A dedicate sensorimotor circuit enables fine texture discrimination by active touch.

Active touch facilitates environments exploration by voluntary, self-generated movements. However, the neural mechanisms underlying sensorimotor control for active touch are poorly understood. During foraging and feeding, Drosophila gather information on the properties of food (texture, hardness, ta...

Full description

Bibliographic Details
Main Authors: Jie Yu, Xuan Guo, Shen Zheng, Wei Zhang
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2023-01-01
Series:PLoS Genetics
Online Access:https://doi.org/10.1371/journal.pgen.1010562
Description
Summary:Active touch facilitates environments exploration by voluntary, self-generated movements. However, the neural mechanisms underlying sensorimotor control for active touch are poorly understood. During foraging and feeding, Drosophila gather information on the properties of food (texture, hardness, taste) by constant probing with their proboscis. Here we identify a group of neurons (sd-L neurons) on the fly labellum that are mechanosensitive to labellum displacement and synapse onto the sugar-sensing neurons via axo-axonal synapses to induce preference to harder food. These neurons also feed onto the motor circuits that control proboscis extension and labellum spreading to provide on-line sensory feedback critical for controlling the probing processes, thus facilitating ingestion of less liquified food. Intriguingly, this preference was eliminated in mated female flies, reflecting an elevated need for softer food. Our results propose a sensorimotor circuit composed of mechanosensory, gustatory and motor neurons that enables the flies to select ripe yet not over-rotten food by active touch.
ISSN:1553-7390
1553-7404