The GRETOBAPE Gas-phase Reaction Network: The Importance of Being Exothermic

The gas-phase reaction networks are the backbone of astrochemical models. However, due to their complexity and nonlinear impact on the astrochemical modeling, they can be the first source of error in the simulations if incorrect reactions are present. Over time, following the increasing number of sp...

Full description

Bibliographic Details
Main Authors: Lorenzo Tinacci, Simón Ferrada-Chamorro, Cecilia Ceccarelli, Stefano Pantaleone, Daniela Ascenzi, Andrea Maranzana, Nadia Balucani, Piero Ugliengo
Format: Article
Language:English
Published: IOP Publishing 2023-01-01
Series:The Astrophysical Journal Supplement Series
Subjects:
Online Access:https://doi.org/10.3847/1538-4365/accae9
Description
Summary:The gas-phase reaction networks are the backbone of astrochemical models. However, due to their complexity and nonlinear impact on the astrochemical modeling, they can be the first source of error in the simulations if incorrect reactions are present. Over time, following the increasing number of species detected, astrochemists have added new reactions, based on laboratory experiments and quantum mechanics (QM) computations, as well as reactions inferred by chemical intuition and the similarity principle. However, sometimes no verification of their feasibility in the interstellar conditions, namely their exothermicity, was performed. In this work, we present a new gas-phase reaction network, GRETOBAPE , based on the KIDA2014 network and updated with several reactions, cleaned from endothermic reactions not explicitly recognized as such. To this end, we characterized all the species in the GRETOBAPE network with accurate QM calculations. We found that ∼5% of the reactions in the original network are endothermic, although most of them are reported as barrierless. The reaction network of Si-bearing species is the most impacted by the endothermicity cleaning process. We also produced a cleaned reduced network, GRETOBAPE-red , to be used to simulate astrochemical situations where only C-, O-, N-, and S-bearing species with less than six atoms are needed. Finally, the new GRETOBAPE network, its reduced version, and the database with all the molecular properties are made publicly available. The species property database can be used in the future to test the feasibility of possibly new reactions.
ISSN:0067-0049