Modules which are self-p-injective relative to projection invariant submodules

In this article, we focus on modules M such that every homomorphism from a projection invariant submodule of M to M can be lifted to M. Although such modules share some of the properties of PI -extending (i.e., every projection invariant submodule is essential in a direct summand) modules, it is sho...

Full description

Bibliographic Details
Main Authors: Kara Yeliz, Tercan Adnan
Format: Article
Language:English
Published: Sciendo 2017-01-01
Series:Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
Subjects:
Online Access:https://doi.org/10.1515/auom-2017-0010
_version_ 1818307375303491584
author Kara Yeliz
Tercan Adnan
author_facet Kara Yeliz
Tercan Adnan
author_sort Kara Yeliz
collection DOAJ
description In this article, we focus on modules M such that every homomorphism from a projection invariant submodule of M to M can be lifted to M. Although such modules share some of the properties of PI -extending (i.e., every projection invariant submodule is essential in a direct summand) modules, it is shown that they form a substantially bigger class of modules.
first_indexed 2024-12-13T06:57:23Z
format Article
id doaj.art-e4bc30a9288241aa84e48bad8388c102
institution Directory Open Access Journal
issn 1844-0835
language English
last_indexed 2024-12-13T06:57:23Z
publishDate 2017-01-01
publisher Sciendo
record_format Article
series Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
spelling doaj.art-e4bc30a9288241aa84e48bad8388c1022022-12-21T23:56:01ZengSciendoAnalele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica1844-08352017-01-0125111712910.1515/auom-2017-0010Modules which are self-p-injective relative to projection invariant submodulesKara Yeliz0Tercan Adnan1Hacettepe University, Department of Mathematics, Beytepe Campus, Ankara 06532, TurkeyHacettepe University, Department of Mathematics, Beytepe Campus, Ankara 06532, TurkeyIn this article, we focus on modules M such that every homomorphism from a projection invariant submodule of M to M can be lifted to M. Although such modules share some of the properties of PI -extending (i.e., every projection invariant submodule is essential in a direct summand) modules, it is shown that they form a substantially bigger class of modules.https://doi.org/10.1515/auom-2017-0010injective moduleprojection invariant submodulepi-extending moduleextending moduleprimary 16d10secondary: 16d4016d50
spellingShingle Kara Yeliz
Tercan Adnan
Modules which are self-p-injective relative to projection invariant submodules
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
injective module
projection invariant submodule
pi-extending module
extending module
primary 16d10
secondary: 16d40
16d50
title Modules which are self-p-injective relative to projection invariant submodules
title_full Modules which are self-p-injective relative to projection invariant submodules
title_fullStr Modules which are self-p-injective relative to projection invariant submodules
title_full_unstemmed Modules which are self-p-injective relative to projection invariant submodules
title_short Modules which are self-p-injective relative to projection invariant submodules
title_sort modules which are self p injective relative to projection invariant submodules
topic injective module
projection invariant submodule
pi-extending module
extending module
primary 16d10
secondary: 16d40
16d50
url https://doi.org/10.1515/auom-2017-0010
work_keys_str_mv AT karayeliz moduleswhichareselfpinjectiverelativetoprojectioninvariantsubmodules
AT tercanadnan moduleswhichareselfpinjectiverelativetoprojectioninvariantsubmodules